
Design and Evaluation of a RISC Processor with a
Tomasulo Scheduler

Diplomarbeit

Lehrstuhl f̈ur Rechnerarchitektur
Prof. Wolfgang J. Paul

FB14 Informatik
Universiẗat des Saarlandes

Daniel Kröning

Januar 1999

ii

iii

Hiermit erkläre ich an Eides statt, daß ich f¨ur die Anfertigung dieser Arbeit keine
anderen als die angegebenen Quellen verwendet habe. Ich versichere, die Arbeit noch
keinem anderen Pr¨ufungsamt vorgelegt zu haben.

Saarbr¨ucken, im Januar 1999

Daniel Kröning

iv

Contents

1 Introduction 1

1.1 Results . 1

1.2 Outline . 2

2 The Scheduling Algorithm 3

2.1 The DLX Architecture . 3

2.2 The Tomasulo Scheduling Algorithm 3

2.3 The Reorder Buffer . 9

2.4 The Overall Scheduling Protocol . 9

2.5 Overall Scheduling Example . 12

3 Tomasulo Hardware 15

3.1 Overview . 15

3.2 The PC Environment . 18

3.3 Instruction Memory Environment 19

3.4 Instruction Register Environment . 19

3.5 Decode/Issue Environment . 21

3.6 The Reservation Station Environments 34

3.7 Function Unit Environments . 47

3.8 CDB Control Environment . 49

3.9 Reorder Buffer Environment . 52

3.10 Register File Environment . 59

4 Memory System 69

4.1 Overview of the Data Memory System 69

4.2 The Data Memory Reservation Station 71

4.3 Dispatch Protocol . 71

4.4 Implementation of the Dispatch Protocol 73

4.5 Memory Interface . 75

v

vi CONTENTS

5 Cost and Cycle Time 81

5.1 Hardware Cost . 81

5.2 Cycle Time . 85

5.3 Quality Survey and Comparison. 87

6 Correctness 89

6.1 Data Consistency . 89

6.2 Termination . 92

7 Perspective 95

A Auxiliary circuits 97

A.1 The Find First One Circuit . 97

A.2 Conditional Sign Extension . 99

A.3 The Integer Function Unit . 99

A.4 ROB Auxiliary Circuits . 99

A.5 Calculation of EPC/EPCn . 100

B The Cost and Delay Calculation Programs 103

B.1 The Hardware Cost Calculation Program 103

B.2 The Delay Calculation Program . 104

C The DLX Instruction Set 107

C.1 Instruction Formats . 107

C.2 Instruction Set Coding . 108

Chapter 1

Introduction

The performance of today’s microprocessors is astonishing. Beneath the progress
in wafer technology, a big contribution to the improvements achieved in the past
years was made by developing sophisticated scheduling algorithms. One of the major
scheduling algorithms used in recent CPUs was specified long ago in 1967 byRobert
M. Tomasulo[Tom67]. However, up to now concrete data on the impact of the algo-
rithm on hardware cost and cycle time has been missing.

Thus, this thesis gives a detailed implementation of the Tomasulo scheduling al-
gorithm for the DLX RISC architecture [HP96]. The design is based on a machine
presented in [Lei98] and realizes full support for precise interrupts with areorder
buffer [SP88]. Cost and cycle time are calculated and evaluated with a formal model
presented in [MP95]. The results are compared to other DLX implementations.

1.1 Results

The Tomasulo scheduling algorithm is one of the most competitive scheduling algo-
rithms. It provides low CPI rates down to 1.1 which is shown by simulations on
common benchmarks in [Ger98, Del98]. This thesis shows that adding a Tomasulo
scheduler does not have any impact on the cycle time of the CPU design.

The Tomasulo scheduling algorithm with precise interrupts is known to be expen-
sive regarding hardware cost. A complete CPU core design counts about 236,000 gate
equivalents, which is about two times as much as is needed by a pipelined design with
equal function units. Compared to the total costs of a CPU design (including the first
level cache), this is just an increase of 26 percent at a 44 percent higher performance.

1

2 CHAPTER 1. INTRODUCTION

1.2 Outline

Chapter 2 describes some basic concepts, like the hardware model and gives a rough
overview of the design. It also includes a terse introduction to the Tomasulo scheduling
algorithm itself. Chapter 3 presents all the implementation details on gate level other
than the memory system, which is presented separately in chapter 4. In chapter 5, the
analysis of the cost and cycle time of the design is carried out. The results are compared
to other DLX implementations in order to evaluate the overall design quality impact
of different scheduling algorithms. Chapter 6 contains the correctness proof for the
hardware.

Chapter 2

The Scheduling Algorithm

2.1 The DLX Architecture

The underlying CPU is an implementation of the DLX architecture citeHP96. That is
a load/store architecture with support for integer and floating point instructions. It has
three register files:

� The general purpose register file(GPR) consists of 32�32 integer registers
(R0,...,R31), where R0 is defined to be always zero. The general purpose registers
are used for all integer operations and memory addressing purposes.

� Thefloating point register file (FPR) consists of 32�32 single precision float-
ing point registers (FGR0,...,FGR31). These registers can also be accessed as
16�64 double precision floating point registers (FPR0, FPR2,...,FPR30), well
aligned accesses assumed. FPR0 is mapped onto FGR0 and FGR1, and so on.
The floating point registers are only used by FPU (floating point unit) instruc-
tions.

� Thespecial purpose register file(SPR) consists of several registers needed for
special purposes such as flags and masks. An example is the IEEE floating point
flags register.

The DLX instruction set (appendix C) is a RISC instruction set and is similar to
SUN’s MIPS instruction set.

2.2 The Tomasulo Scheduling Algorithm

The following sections give a short summary of the Tomasulo scheduling algorithm.
The algorithm was specified in 1967 by Robert M. Tomasulo for an IBM 360/91
[Tom67]. A more comprehensive description is also available in [M¨ul97a].

3

4 CHAPTER 2. THE SCHEDULING ALGORITHM

In its original form, the Tomasulo scheduling algorithm is limited to two-address-
instructions (one source, one destination, e.g., R1+=R2) and multiple sequential func-
tion units for each kind of operation. However, it is easy to extend the algorithm to
handle today’s common instructions with three addresses (two source registers, one
destination, e.g., R1:=R2+R3). The algorithm is widely used, e.g., by IBM PowerPC,
Intel Pentium-Pro or AMD K5 [Mot97, CS95].

2.2.1 Pipelining vs. Out-of-Order Execution

Pipelining

There are many ways of implementing the execution of an instruction. In general, the
execution of an instruction can be split into the following phases:

fetch decode execute writeback

decode issue dispatch

� Instruction fetch: The instruction is fetched from the instruction memory system
into a special register.

� Instruction decode: During instruction decode the instruction is interpreted and
passed to an execution unit. This phase can be split into three subparts: decode
(instruction word interpretation), issue (passing the instruction and its operands
to a function unit or to an instruction queue), and dispatch (passing the data for
the actual execution). This terminology is not yet uniform; [HP96] states that
issue and dispatch are sometimes used conversely.

� Execution: The actual calculation or data transfer is performed.

� Writeback: The result of the instruction is written into the register file.

Pipelined CPUs overlap the processing of different phases of different instructions.
The first approach is to process the single phases of the instructions strictly in program
order. Figure 2.1 illustrates this. Pipelining implies in-order execution, i.e., the execu-
tion of the subsequent instructions is also done strictly in program order.

However, in-order execution does not fully utilize all functional parts of a CPU.
The rule of in-order execution prohibits that subsequent instructions overtake previous
instructions. In figure 2.1, instruction I2 blocks the execute stage for four cycles, since
the division function unit has a long latency. Instruction I3 has to be stalled upon the
begin of its execution, since the execution stage is blocked by I2 and since it requires
the result of I2 (data dependence).

2.2. THE TOMASULO SCHEDULING ALGORITHM 5

Out-of-Order Execution

Data dependencies and different latencies of the function units can cause additional de-
lays which reduce performance. In order to eliminate these delays, the rule of in-order
execution of all instruction phases must be dropped. The result is anout-of-order ex-
ecutionalgorithm. An out-of-order execution algorithm tries to increase performance
by distributing the instructions among the available hardware components regardless
their original order. There are two main requirements for such an algorithm:

� The algorithm must maintain data consistency.

� The algorithm is supposed to achieve a high utilization of the function units to
reduce the delays.

Figure 2.2 depicts the execution of I2 to I4 on an out-of-order CPU. Instruction I4

is now able to enter the execution stage even before I3 does, since I4 does not depend
on any result of the preceding instructions. It even terminates before I2, which causes
awrite after write (WAW) data hazardin R1 [HP96].

Furthermore, I3 tries to read R1 before I2 writes it. Thus, there is also aread after
write (RAW) data hazard. Since I4 writes R1 before I3 reads it, there is also awrite
after read (WAR) hazard.

There are several ways to resolve these hazards. In order to resolve RAW hazards,
result forwardingis usually used. In the given example, the result of the division is
forwarded to instruction I3. The scheduling algorithm is supposed to stall the execution
of an instruction until all operands are available.

One way to resolve WAW and WAR hazards is to skip the writeback of a result into
a register if a subsequent instruction, which writes into the same register, already ter-
minated. In the given example, the writeback of the result of instruction I2 would have
to be skipped. The result is forwarded to instruction I3 instead. This is implemented
by the Tomasulo scheduling algorithm in its original form.

Another way is to delay the result writeback until all previous instructions wrote
their result into the register file, i.e., the writeback is performed in-order. This is imple-
mented by the Tomasulo scheduling algorithm with reorder buffer used in this thesis.

2.2.2 Basics of the Tomasulo Scheduling Algorithm

The Tomasulo scheduling algorithm has several essential features:

� The Tomasulo scheduling algorithm has a distributed data structure, and requires
only few global data.

� The algorithm allows data forwarding wherever possible.

6 CHAPTER 2. THE SCHEDULING ALGORITHM

IF D Ex WBI : R1:=01

IF DI : R1:=R2/R32 WBEx

Forwarding

IF WBExD

0 1 2 3 4 5 6 7 8 9

WBEx

10

DIFI : R1:=R8+R9

I : R4:=R1*R13

4

t

Figure 2.1: Pipelining example

IF DI : R1:=R2/R32 Ex WB

IF DI : R4:=R1*R13 WBExidle

t

0 1 2 3 4 5 6 7 8

I : R1:=R8+R9 IF D

9

4 Ex WB

10

Forwarding

Figure 2.2: Out-of-order execution example. Instructions I2 and I4 cause a WAW
hazard, instructions I2 and I3 cause a RAW hazard, and instructions I3 and I4 cause a
WAR hazard.

2.2. THE TOMASULO SCHEDULING ALGORITHM 7

Register File

Operand Bus

Function
Unit

op 2op 1

Function
Unit

op 2op 1

Result Bus

tag op1 tag op2
tag op1
tag op1
tag op1

tag op2
tag op2
tag op2

tag op1 tag op2
tag op1
tag op1
tag op1

tag op2
tag op2
tag op2

Function
Unit

Operand Bus

Function
Unit

Register File

tag
tag
tag
tag
tag

con-
sumer

Common Data Bus

producer

ROB

Basic structure of an in-order design After adding Tomasulo scheduling

Figure 2.3: The basic data structures and data paths before and after adding Tomasulo
scheduling

� The algorithm resolves WAW data hazards by inherent register renaming.

� The algorithm has support for function units with variable latency. This includes
function units with variable latencies depending on the actual input data values.

Please note that the original Tomasulo algorithm uses out-of-order termination and
thus does not support precise interrupts. In order to support precise interrupts, are-
order buffer(ROB) [SP88] is added to the machine described in this thesis. The re-
order buffer implements in-order termination. This results in small modifications of
the original scheduling algorithm. Thus, the following sections describe a modified
scheduling algorithm presented in [Ger98] rather than the original Tomasulo schedul-
ing algorithm. The complete protocol is presented in section 2.4, and its hardware
implementation is presented in chapter 3.

2.2.3 Key Data Structures and Transfer Paths

Figure 2.3 gives an overview of the basic data paths of an in-order design and of the
same design after adding Tomasulo scheduling with reorder buffer. The Tomasulo
scheduling algorithm requires the following data structures and transfer paths:

Each register (namedRi.data) is extended by a tag and a valid flag. This extension
is called producer table. These additional data fields have the following purposes:

� Ri .valid: The valid flag of a register is set iff the corresponding data item con-
tains the valid value of the register.

8 CHAPTER 2. THE SCHEDULING ALGORITHM

op tag full op1.valid op1.tag op1.data op2.tagop1.valid op2.data

Figure 2.4: Reservation station data items

� Ri .tag: If the valid flag is not set, the tag data item of a register contains a tag
for the instruction which produces the desired value.

Each function unit is extended by an instruction buffer to store instructions and
operands until all operands and the function unit itself are available. These buffer
entries are calledreservation stations.

The reservation stations provide the operands for the function units. They are
basically a queue for the issued instructions. Each reservation station RSi holds exactly
one instruction and its operands and has the following components (figure 2.4):

� TheRSi.full data item is set iff the entry is in use.

� The RSi.op data item contains additional operation flags. This is, e.g., for an
integer ALU, the concrete operation like addition, subtraction, shifting, etc.

� TheRSi.tag data item contains the ROB tag of the instruction in the reservation
station. This item is an addition to the original Tomasulo algorithm.

� The RSi.op1 and RSi.op2 items hold the source operands of the instruction.
They are a copy of the appropriate register file and producer table entries and
have the same semantics.

The instructions are written into an appropriate reservation station during instruc-
tion issue. As soon as all operands of a given instruction in the queue (i.e., in a reser-
vation station) are available, the instruction is ready to be dispatched into the actual
function unit.

The result bus of the in-order design is replaced by thecommon data bus(CDB).
During instruction dispatch, the instruction is passed to the function unit. On leaving
the function unit, the CDB is requested for writing the result on the CDB. Functional
units writing on the CDB are calledproducers. Units reading the CDB are called
consumers. The reservation stations are the usual consumers. They watch the CDB for
the operands they are missing (bus snooping). However, before a producer can write
on the CDB, it has to request the CDB, since multiple producers might try to write on
the CDB in the same cycle. These requests are handled by the CDB control, which
acknowledges at most one request in the next cycle.1

1In the original Tomasulo design, even two cycles of lead time are required.

2.3. THE REORDER BUFFER 9

Name Width Purpose

valid 1 valid = 1, data field contains a valid value
data 64 result data
dest 4 address of the destination register

Table 2.1: Main components of a reorder buffer entry

2.3 The Reorder Buffer

In order to realize precise interrupts, the design in this thesis contains areorder buffer
(ROB). Precise interrupts are essential for today’s microprocessors. An interrupt be-
tween instruction Ii�1 and Ii is precise iff instructions I1,...,Ii�1 are completed before
starting the ISR and later instructions (Ii ,...) did not change the state of the machine
[SP88, Mül97b].

On completion, the reorder buffer [SP88] gathers the results produced by the func-
tion units and sorts them by issue order, i.e., by program order. The results are written
afterwards into the register file in issue order. However, before writing the result of
instruction Ii , it is checked whether this instruction causes an interrupt or not. Thus,
in case of an interrupt, the register file contains exactly all modifications made by
instructions I0 to Ii�1.

The reorder buffer is realized as circular FIFO queue with a head and a tail pointer.
New instructions are put into the ROB entry pointed to by the tail pointer. This ROB
address is also used as a tag to the result. This is in contrast to the original Tomasulo
design, which uses tags associated with the reservation stations. Table 2.1 lists the
main components of a reorder buffer entry. The ROB needs further extensions in order
to support interrupts (chapter 3).

When an instruction completes, both the result and the exception flags are written
into the reorder buffer entry pointed to by this reorder buffer tag. In each cycle, the
entry at the head of the reorder buffer is tested. If it is valid (i.e., the instruction has
completed), a check for exceptions is performed and the data is written into the register
file. Depending on the type of the interrupt (abort/repeat/continue), the result of Ii is
written into the register file before executing the interrupt service routine.

2.4 The Overall Scheduling Protocol

The following section presents the overall scheduling protocol, which is implemented
in this thesis [Mül97a, Ger98, Del98]. The execution of an instruction Ii is split into
six phases: fetch, issue, dispatch, execution, completion and writeback.

10 CHAPTER 2. THE SCHEDULING ALGORITHM

if (9 free RS for I i ^ /ROB.full) 1
f

RS.op:=I i; 2
RS.full:=1;
RS.tag:=ROB.tail;
8 operands x of I i 3

if (R x:A.valid) 4
RS.op x.valid:=1;
RS.op x.data:=R x:A.data;

else if (CDB.tag=R x:A.tag) 5
RS.op x.data:=CDB.data;
RS.op x.valid:=1;

else if (ROB[R x:A.tag].valid) 6
RS.op x.data:=ROB[R x:A.tag].data;
RS.op x.valid:=1;

else 7
RS.op x.tag:=R x:A.tag;
RS.op x.valid:=0;

9>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>;

initialize
reser-
vation
station

if (I i has a destination register y:A) 8
Ry:A.tag:=ROB.tail;
ROB[ROB.tail].dest:= y:A;

else
ROB[ROB.tail].dest:=0;

9>>>=
>>>;

initialize
ROB
entry

ROB.tail++; 9
g

Figure 2.5: Issue protocol. The register address of operandx is denoted byx:A.

2.4.1 Issue

Let Ii be the instruction to be issued. For issue, it is essential that an appropriate
reservation station and a ROB entry are available1 (figure 2.5). If so, the instruction
is issued into this reservation station entry2 . For each operand of the instruction three
sources have to be checked3 : The operand might be in the register file4 , on the CDB
5 , or in the reorder buffer6 . If not, it is the destination of a preceding, incomplete

instruction 7 , and instead of the operand, the tag of this instruction is stored in the
reservation station.

Simultaneously, the ROB entry is allocated and initialized for the instruction8 .
If the instruction has a destination register, the address of this register is stored in the
ROB entry and the pointer to the ROB entry is stored as tag in the producer table. After
issue, the tail pointer is incremented9 .

2.4. THE OVERALL SCHEDULING PROTOCOL 11

if (9 RS with 1
RS.op x.valid=1 8 operands x
^ /FU.stall)

f
FU.op:=RS.op; 2
FU.tag:=RS.tag;
FU.op x:=RS.op x;

9=
;

pass in-
struction
to FU

RS.full:=0; 3
g

Figure 2.6: Dispatch protocol

2.4.2 Dispatch

During instruction dispatch (figure 2.6), a valid instruction moves from a reservation
station entry into the actual function unit. An instruction is valid iff all its operands
are valid 1 . Furthermore, the function unit must not be stalled, i.e., it must be ready
to accept a new instruction. If more than one instruction for a certain function unit is
valid, the scheduler has to choose one for dispatch. The correctness proof in chapter 6
relies on choosing the oldest among the valid instructions. This issue is discussed in
chapter 3. If all these conditions hold, the instruction is passed to the function unit2

and the reservation station is freed3 .

In real hardware, RS.opx can also be forwarded via CDB from a producer. In
contrast to the forwarding during issue, this forwarding is just an optimization and not
necessary for correctness. Thus, this protocol element is omitted here.

2.4.3 Completion

Before completion (figure 2.7), the reservation station requests the CDB. As soon as
the reservation station gets an acknowledge1 , the result and the ROB tag are put on
the CDB 2 . The according reorder buffer entry is filled with the result and the valid
bit is set 3 .

2.4.4 Snooping on the CDB

On completion, the result of an operation is put on the CDB. Instructions in the reserva-
tion stations, which depend on this result, read the operand data from the CDB (figure
2.8). The reservation stations identify the results by the ROB tag.

12 CHAPTER 2. THE SCHEDULING ALGORITHM

if (FU has result ^
got CDB-acknowledge) 1

f
CDB.data:=FU.result; 2
CDB.tag:=FU.tag;

ROB[CDB.tag].valid:=1; 3
ROB[CDB.tag].data:=CDB.data;
g

Figure 2.7: Completion protocol

8 operands x
if (RS.full ^

/RS.op x.valid ^
(RS.op x.tag=CDB.tag))

f
RS.op x.valid:=1;
RS.op x.data:=CDB.data;
g

Figure 2.8: CDB snooping protocol

2.4.5 Retirement / Writeback and Interrupts

During retirement (figure 2.9), a result of an instruction in the ROB is written into the
register file 3 , if no interrupt of type abort or repeat is pending2 .

At the same time, the result flags are checked4 . Almost all result flags are masked
with the SR registers prior this check. If an error occurred while processing the in-
struction, the interrupt service routine is started. Section 3 contains more details of the
interrupt mechanism.

2.5 Overall Scheduling Example

Figure 2.10 contains an example of Tomasulo scheduling with reorder buffer, consid-
ering the following piece of code:

I1: R3:=M[R10]
I2: R1:=R2+R3

For this example, M[R10] contains the value 11 and R2 contains 9. In cycle t=0,
the first instruction is already in the execution phase. It is executed by the memory unit

2.5. OVERALL SCHEDULING EXAMPLE 13

if (ROB is not empty ^ 1
ROB[ROB.head].valid)

f
if (((ROB[ROB.head].cause ^ SR) = 0)

_ interrupt is of type continue) 2
f

x:=ROB[ROB.head].dest;
Rx.data:=ROB[ROB.head].data; 3
if (ROB.head=R x.tag) R x.valid=1;

9>=
>; write

back

g

if ((ROB[ROB.head].cause ^ SR) 6= 0) 4
Perform Interrupt

else
ROB.head++;

g

Figure 2.9: Retirement / writeback protocol

and stored in reorder buffer entry 0. Furthermore, in cycle t=0 the second instruction
is fetched.

In cycle t=1, this instruction is decoded and issued into a ALU reservation station.
The ALU reservation is assumed to have only one reservation station. The reorder
buffer entry 1 is also filled with this instruction.

In cycle t=2, the load instruction is one cycle ahead of completion. Thus, the
memory reservation station requests the CDB for the next cycle.

In cycle t=3, this request is acknowledged by the CDB control. The result of
the load operation (11) is put on the CDB. This makes the second operand of the
ALU reservation station valid. Since both operands are now valid, the instruction is
dispatched into the ALU in the same cycle. Furthermore, the ALU requests the CDB
for the next cycle. In the same cycle, the result of the load instruction on the CDB is
written into the reorder buffer entry 0, which becomes valid.

In cycle t=4, the result of the load instruction is written from the reorder buffer
entry 0 into the register file. R3 becomes valid by this. In the same cycle, the CDB
control acknowledges the CDB request by the ALU. The result of the addition is put
on the CDB and reorder buffer entry 1 becomes valid.

In cycle t=5, this result is finally written into the register file.

14
C

H
A

P
T

E
R

2.
T

H
E

S
C

H
E

D
U

LI
N

G
A

LG
O

R
IT

H
M

ALU reservation station for I2 register file
t global operand 1 operand 2 R1 R2 R3

op tag full tag valid data tag valid data tag valid data tag valid data tag valid data

0 - - 0 - - - - - - - 1 0 - 1 9 ROB-0 0 -
1 + ROB-1 1 - 1 9 ROB-0 0 - ROB-1 0 - - 1 9 ROB-0 0 -
2 + ROB-1 1 - 1 9 ROB-0 0 - ROB-1 0 - - 1 9 ROB-0 0 -
3 + ROB-1 1 - 1 9 ROB-0 1 11 ROB-1 0 - - 1 9 ROB-0 0 -
4 - - 0 - - - - - - ROB-1 0 - - 1 9 ROB-0 0 -
5 - - 0 - - - - - - ROB-1 0 - - 1 9 - 1 11
6 - - 0 - - - - - - - 1 20 - 1 9 - 1 11

reorder buffer common
t global entry 0 entry 1 data bus

ROB.head ROB.tail valid data dest valid data dest req ack tag valid data

0 ROB-0 ROB-1 0 - gpr R3 - - - - - - - 0 -
1 ROB-0 ROB-2 0 - gpr R3 0 - gpr R1 - - - 0 -
2 ROB-0 ROB-2 0 - gpr R3 0 - gpr R1 Mem - - 0 -
3 ROB-0 ROB-2 0 - gpr R3 0 - gpr R1 ALU Mem ROB-0 1 11
4 ROB-0 ROB-2 1 11 gpr R3 0 - gpr R1 - ALU ROB-1 1 20
5 ROB-1 ROB-2 - - - - 1 20 gpr R1 - - - 0 -
6 ROB-2 ROB-2 - - - - - - - - - - - 0 -

Figure 2.10: Scheduling example

Chapter 3

Tomasulo Hardware

3.1 Overview

3.1.1 Gates, Circuits, Cost and Delay

The hardware model used in this thesis is presented in [MP95]. The following sections
just give a really short overview.

For calculation of cost and delay the methods and formulae presented in [MP95]
will be used. In particular, the overall calculation is also done by transforming all the
complex formulae into a C-program, which is discussed in chapter 5. Thus, cost and
delay formulae are omitted in the following chapters.

Figure 3.1 lists the symbols of the basic gates used in the designs. In addition, the
following basic circuits are used: n-bit adder / incrementer, n-bit multiplexer, tristate
driver, n-bit register, n-bit decoder / encoder, n-bit zero tester, the generic parallel
prefix circuit, RAM, shifter, and ALU. A detailed description and the cost and delay
formulae can be found in [MP95].

Furthermore, the hardwired control described in this chapter requires two addi-
tional basic circuits: the n-bit find first one circuit (FFO) and the find last one circuit
(FLO). They calculate the following functions:

f fo: f0;1gn !f0;1gn+1, (an�1; :::;a0) 7! (bn�1; :::;b0;zero), such that

bi =

�
1 : i = minf jjaj = 1^ j 2 f0; :::;n�1gg
0 : otherwise

zero=

�
1 : ai = 0 for all i 2 f0; :::;n�1g
0 : otherwise

15

16 CHAPTER 3. TOMASULO HARDWARE

oe 0 1

Tristate Driver AND OR XOR Multiplexer

ce

in

out
Inverter NAND NOR XNOR Flip-Flop

Figure 3.1: Symbols of the basic gates

f lo: f0;1gn !f0;1gn+1, (an�1; :::;a0) 7! (bn�1; :::;b0;zero), such that

bi =

�
1 : i = maxf jjaj = 1^ j 2 f0; :::;n�1gg
0 : otherwise

zero=

�
1 : ai = 0 for all i 2 f0; :::;n�1g
0 : otherwise

A recursive construction of the circuits and the cost and delay formulae are given
in appendix A.1.

3.1.2 The Pipeline Stages

In this chapter, the complete hardware of a DLX RISC core with Tomasulo scheduling
is presented. Chapter 4 extends the design with an interface to main memory for
load/store operations.

The design is based on the DLX implementations published in [MP95, MP98,
Lei98]. It basically consists of a five stage pipeline. The first stage (IF) performs the
instruction fetch. In the second stage (D/I), the fetched instruction word is decoded
and passed into an appropriate reservation station. The third stage (EX) contains the
actual function units, which execute the instruction. Fast function units (i.e., one cycle
latency) combine execution and dispatch in one cycle. For slow function units, the
execute phase might take several cycles. In the fourth stage (completion), the result
of the instruction is stored in the reorder buffer. The fifth stage (WB) performs the
writeback of the result into the register file.

3.1. OVERVIEW 17

IF

D e c o d e / I s s u e
E n v i r o n m e n t

Data Memory
Environment

ALU
Environment FU 1 FU 5

Float Float

D/I

PC
EnvironmentEnvironment

Memory
Instruction

Reorder Buffer
Environment

Register File
EnvironmentsWB

C
D

B

Fo
rw

ar
di

ng

Stations
Reservation

Stations
ReservationReservation

Stations Stations
Reservation

......

......

Result Result Result Result

EX

Compl.

5

4

3

2

1

Figure 3.2: Overview of the data paths

3.1.3 Environments

The CPU consists of environments. Figure 3.2 gives an overview of the data paths and
the interconnection of their environments.

� ThePC environmentcontains the PCs of stage 0 and 1 and performs PC calcu-
lations.

� The instruction memory environment performs the actual instruction fetch
and is the interface to the instruction memory or cache.

� The IR environment contains the instruction register of the decode/issue stage
(IR1).

18 CHAPTER 3. TOMASULO HARDWARE

� Thedecode/issue environmentdecodes the fetched instructions and distributes
the instructions among the function units. It also contains the main control au-
tomaton.

� Each function unit, including the data memory environment, has its own set of
reservation stationsassigned to it. Each set has an independent control circuit.
The reservation station environments belong to the decode/issue stage.

� The function unit environments contain the function units, e.g., the ALU, the
floating point units, and the data memory interface.

� TheCDB control environment allocates the CDB to the reservation stations.

� The reorder buffer environment contains the reorder buffer and its control
circuit. It also contains large parts of the interrupt handling circuitry and belongs
to the completion stage.

� The register file environment holds the register files and belongs to the write-
back stage.

A detailed description of the individual environments follows.

3.2 The PC Environment

The PC environment (figure 3.3) contains the program counter PC. It is almost identical
with the PC environment found in [Lei98]. The PC register of stage 0 PC0 is used for
the instruction fetch (section 3.3). After the instruction fetch, the value of this register
is saved in oPC1. Furthermore, the PC environment calculates the new value of the PC
register. This is done in dependence of several control signals, which are generated by
the main control (section 3.5):

Usually, the new value of the PC0 register is the old value incremented by four.
In case of a branch, rfe, jump or an interrupt, the PC register has to be clocked with
another value. In these cases, the setPC signal is set. The signal is calculated as
follows:

setPC = JISRrfe_ op.branch_ op.jump_ op.jumpR

The op.branch, op.jump and op.jumpR are active in case of a branch/jump in-
struction and are calculated by the decode/issue environment. In case of a branch or
jump instruction (jumpR=0), co1 (the immediate constant) is the target offset. In case
of a jump register instruction (jumpR=1), the signal op1.l.data (low part of the first
operand) is the new PC. The operands are provided by the decode/issue environment.

The JISRrfe signal is set iff the cause for the active setPC signal is an interrupt or
a rfe instruction. Interrupts are indicated by the JISR signal, which is calculated in the

3.3. INSTRUCTION MEMORY ENVIRONMENT 19

ROB environment. In case of an interrupt, the address of the interrupt service routine
(SISR) is clocked into the PC0 register.

The processing of rfe instructions affects two cycles. In the first cycle after a rfe
instruction, the value of the EPC special purpose register is used as address for the
instruction fetch. In this cycle, the DOrfe signal is active. This signal is provided by
the decode/issue environment. In the second cycle after a rfe instruction, the value of
the EPCn register is used. In this cycle, the rfeEPCn signal is active. The signal is
the DOrfe signal, which is delayed by one cycle with a register (figure 3.4). Thus, the
JISRrfe signal is calculated as follows:

JISRrfe = JISR_ DOrfe_ rfeEPCn

During an issue stall (issuestall=1), all clock enable signals are disabled in order
to prevent modifications of the PC registers.

3.3 Instruction Memory Environment

The instruction memory environment (figure 3.5) performs the actual instruction fetch
and is the interface to the instruction memory or first level instruction cache. The
instruction memory environment fetches the instruction word pointed to by the signal
pc0, which is provided by the PC environment. This instruction word is returned as
signal ir0. Ibusy and pff0 are signals generated by the instruction memory. Ibusy is
active iff the instruction memory is temporary unable to return the requested value,
e.g., because of a cache miss. The pff0 signal is used to implement virtual memory
and indicates a page fault. The instruction memory system only supports word aligned
memory accesses. In case of a misaligned access, the imal0 signal is active. It is
calculated as follows:

imal0 = pc0[0]_ pc0[1]

In case of an interrupt (JISR=1), in case of a misaligned instruction word, or if the
instruction memory system is unable to return the requested instruction word, zero is
returned instead. This is the opcode for a left shift of register R0 over 0 bits, thus, it is
a NOP instruction.

3.4 Instruction Register Environment

The instruction register (IR) environment (figure 3.6) contains the instruction register
IR1, the page fault register PFF1, and the instruction misaligned register IMAL1 of
the decode/issue stage. The instruction register holds the instruction word fetched by
the PC environment.

20 CHAPTER 3. TOMASULO HARDWARE

0

1

10

0

1

0

1 0

1

PC0 PC1
Inc(30)

[31:2]

IF
[1:0]

Add
32

1

0

SISR

EPC

EPCn

co1bjtaken target1rfeEPCnJISRJISRrfesetPC

oPC1

pc1

opc1

32

jumpR op1.l.data

/issuestall

/issuestall

/issuestall

Figure 3.3: PC environment

rfeEPCn

rfe issuestall

Figure 3.4: rfeEPCn register

Adr Dout
32

IM

pff0

Ibusy

pc0
ir0

pff0

Ibusy

imal0 JISR

1

Figure 3.5: Instruction memory environment

3.5. DECODE/ISSUE ENVIRONMENT 21

IR1
32

1

0

NOP

ir0

PFF1
pff0 1

/issuestall

pff1

IR1

co1gen
co1

pup

IMAL1
imal0 1 imal1

Figure 3.6: Instruction register environment

0 1

25:16 15:11

op.jjump

9fillfill6

IR[15] 10

4:010:6 5

1 0 op.rtype

IR1

5

co1

32

Figure 3.7: Immediate constant generation co1gen

For some instructions, the instruction word provides an immediate constant. The
instruction register environment contains the co1gen circuit (figure 3.7), which extracts
the immediate constant from the instruction in IR1 and performs a sign extension to 32
bits (signal co1). It is literally taken from [MP95]. The op.jjump and op.rtype signals
are generated by the decode/issue environment and are used to determine the width of
the constant and the position in the instruction word.

3.5 Decode/Issue Environment

The decode/issue environment serves two purposes: It decodes the instruction word
in IR1 and it distributes the instructions and their operands among the reservation
stations. A DLX floating point instruction can have up to four source operands (two
registers, IEEEf and the interrupt mask), therefore, four operand busses (op1 to op4)
originate in the decode/issue environment.

22 CHAPTER 3. TOMASULO HARDWARE

3.5.1 Decoding the Instruction Word

The decoding of the instruction word is done by the opgen (operation generation)
circuit. The circuit opgen generates several control signals from the instruction word
found in IR1 with a control automaton. This environment is almost literally taken from
[Lei98]. A figure is omitted therefore.

The automaton has two parts, ID1 and ID2. The first part, ID1, has an automaton
state assigned to each instruction. Table 3.1 contains the states and the monomials
which are used to compute the new state. The state is never stored in any register, it is
just used to compute the active control signals. Table 3.1 also lists the control signals
which are active in a given state.

The itype, rtype, and jtype control signals correspond to instruction word formats
of the same denominator (appendix C), iuFOP indicates an unimplemented floating
point instruction, ill indicates an illegal instruction word. The signals fp and db specify
whether floating point (fp=1) or double precision (db=1) values are involved. The
signals with names beginning with ”FU.” indicate the function unit which is required
to process the instruction. All other signals specify the action to be performed by this
function unit.

Depending on its state, ID1 generates further control signals, which are used to
select the correct source and destination operands (table 3.2). For example, op1.RS1
indicates that the register addressed by RS1 is expected on operand bus one. RS1,
FS1, RS2, FS2, RD, FD and SA correspond to bit fields in the instruction word, which
contain the desired register address (appendix C). R31, FCC, RM and MASK are con-
stant register addresses (table 3.15 contains the coding of the special purpose register
addresses). The op2.imm signal is active iff the immediate constant in the instruction
word is operand two.

The second part of the automaton, ID2, is only used by branches. In case of a
conditional branch, it computes the bjtaken signal, which is active iff the branch is to
be taken. If the instruction is not a branch, the signal is undefined. The ID2 automaton
requires two input signals: AEQZ and FCCEQZ. AEQZ is active iff the source operand
of a conditional branch is zero. FCCEQZ is active iff the FCC bit is zero. Both FCC
and the beqz/bnez operand are on the low part of operand bus op1 (table 3.2). Thus,
op1.l.data is tested:

AEQZ = zero(op1.l.data[31:0])

FCCEQZ = op1.l.data[0]

3.5.2 Function Unit Availability Test

As mentioned above, the control automaton ID1 determines which function unit is
required to process the instruction in IR1. Table 3.3 lists all function units with their

3.5. DECODE/ISSUE ENVIRONMENT 23

Target Active control Monomials
state signals IR[31:26] IR[6] IR[5:0]

ALU rtype, FU.alu 000000 * 0001**
000000 * 10****

Shifti rtype, FU.alu 000000 * 0000**
ALUi itype, FU.alu 0*1*** * ******
Load itype, load, FU.mem 100*** * ******
Load.s itype, load, fp, FU.mem 110001 * ******
Load.d itype, load, fp, db, FU.mem 110101 * ******
Store itype, store, FU.mem 101*** * ******
Store.s itype, store, fp, FU.mem 111001 * ******
Store.d itype, store, fp, db, FU.mem 111101 * ******
Faddsub.s rtype, faddsub, fp, FU.fadd 010001 0 00000*
Faddsub.d rtype, faddsub, fp, db, FU.fadd 010001 1 00000*
Fmul.s rtype, fmul, fp, FU.fmul 010001 0 000010
Fmul.d rtype, fmul, fp, db, FU.fmul 010001 1 000010
Fdiv.s rtype, fdiv, fp, FU.fdiv 010001 0 000011
Fdiv.d rtype, fdiv, fp, db, FU.fdiv 010001 1 000011
Fcond.s rtype, fcc, fp, FU.ftest 010001 0 11****

ID1 Fcond.d rtype, fcc, fp, FU.ftest 010001 1 11****
Fabsneg.s rtype, fabsneg, fp, FU.fconv 010001 0 00010*
Fabsneg.d rtype, fabsneg, fp, db, FU.fconv 010001 1 00010*
Ff2i rtype, ff2i, fp, FU.fconv 010001 * 001001
Fi2f rtype, fi2f, fp, FU.fconv 010001 * 001010
FMov.s rtype, fmov, fp, FU.fconv 010001 0 001000
FMov.d rtype, fmov, fp, db, FU.fconv 010001 1 001000
FConv.s rtype, fconv, fp, FU.fconv 010001 * 100*00
FConv.d rtype, fconv, fp, db, FU.fconv 010001 * 100001
Branch itype, bjjr, branch, noFU 00010* * ******
FBranch itype, bjjr, branch, fp, noFU 00011* * ******
JumpReg itype, bjjr, bjtaken, jumpR, noFU 010110 * ******
Jump&LinkReg itype, jalr, bjtaken, jumpR, noFU 010111 * ******
Jump jtype, bjjr, bjtaken, jump, noFU 000010 * ******
Jump&Link jtype, jalr, bjtaken, jump, noFU 000011 * ******
Trap jtype, trap, noFU 111110 * 000000
RFE jtype, rfe, noFU 111111 * ******
Movs2i rtype, movs2i, FU.alu 000000 * 010000
Movi2s rtype, movi2s, FU.alu 000000 * 010001
FUnimp iuFOP, noFU 010001 * 00011*

010001 * 01****
Illegal (z0) ill, noFU -

Taken bjtaken AEQZ � /IR1[26]
/AEQZ � IR1[26]

ID2 FCCEQZ� /IR1[26]
/FCCEQZ� IR1[26]

Untaken /taken

Table 3.1: States, active control signals and DNFs

24 CHAPTER 3. TOMASULO HARDWARE

State Instructions op1. op2. op3. op4. dest.

ALU add, sub, test/set, shift RS1 RS2 - - RD
ALUi addi, subi, test/set immediate RS1 imm - - RD
Shifti shift with shift amount RS1 imm - - RD
Load load GPR RS1 - - - RD
Load.s load single precision FPR RS1 - - - FD
Load.d load double precision FPR RS1 - - - FD
Store store GPR RS1 RD - - -
Store.s store single precision FPR RS1 FD - - -
Store.d store double precision FPR RS1 FD - - -
Faddsub.s fadd.s, fsub.s FS1 FS2 RM MASK FD
Faddsub.d fadd.s, fsub.s FS1 FS2 RM MASK FD
Fmul.s fmul.s FS1 FS2 RM MASK FD
Fmul.d fmul.d FS1 FS2 RM MASK FD
Fdiv.s fdiv.s FS1 FS2 RM MASK FD
Fdiv.d fdiv.d FS1 FS2 RM MASK FD
Fcond.s fc.cond.s FS1 FS2 - MASK FCC
Fcond.d fc.cond.d FS1 FS2 - MASK FCC
Fabsneg.s fabs.s, fneg.s FS1 - - - FD
Fabsneg.d fabs.d, fneg.d FS1 - - - FD
Ff2i mf2i FS1 - - - RS2
Fi2f mi2f RS2 - - - FS1
FMov.s mov.s FS1 - - - FD
FMov.d mov.d FS1 - - - FD
FConv.s cvt.s.d, cvt.s.i, cvt.i.s, cvt.i.d FS1 - - - FD
FConv.d cvt.d.i, cvt.d.s FS1 - - - FD
Branch beqz, bnez RS1 - - - -
FBranch fbeqz, fbnez FCC - - - -
JumpReg jr RS1 - - - -
Jump&LinkReg jalr RS1 - - - R31
Jump j - - - - -
Jump&Link jal - - - - R31
Trap trap - - - - -
RFE rfe - - - - -
Movs2i movs2i SA - - - RD
Movi2s movi2s RS1 - - - SA

Table 3.2: Operands and bus use

3.5. DECODE/ISSUE ENVIRONMENT 25

FU Purpose

FU[0] = FU.alu integer instructions, movi2s, movs2i
FU[1] = FU.mem load, store
FU[2] = FU.fadd floating point addition and substraction
FU[3] = FU.fmul floating point multiplication
FU[4] = FU.fdiv floating point division
FU[5] = FU.fconv conversion floating point / integer
FU[6] = FU.ftest floating point condition tests

Table 3.3: Coding of the function units

FU0.full

FUn-1.full

FU[n-1]

FU[0]

. .
 .

. . FUbusy

Figure 3.8: Function unit availability test FUtest

purpose and the control signals used to identify them. For each function unit, a single
FU[i] is defined in order to simplify notation.

The FUtest circuit of figure 3.8 tests whether this function unit is available. This is
done as follows (n denotes the number of function units):

FUbusy=
n�1W

i=0
(FUi.full ^ FU[i])

The FUi.full signals are generated by the reservation station controls of the func-
tion units. FUi.full is active iff the reservation stations of the corresponding function
unit are not able to accept an instruction.

The signal set D.FUi.issue specifies the function unit which is actually used for
issue. These signals are disabled in case of an issue stall, which is indicated by the
issuestall signal.

D.FUi.issue = FU[i] ^ issuestall i 2 f0; :::;n�1g

3.5.3 Operand Address Generation Agen

The decode/issue environment also provides the operands of the instruction. For the
source operands, the values are provided, if available. If they are not available, the

26 CHAPTER 3. TOMASULO HARDWARE

src1 src2

co1 co1

op

datagen datagen datagen datagen

1/2 1/2 RM SR

op1 op2 op3 op4

destgen

dest

op

Agen

IR1

Figure 3.9: Generation of the operands

decode/issue environment provides the appropriate instruction tag to the reservation
stations. This is done by the Agen and datagen circuits. For the destination operand,
the type and address is determined. This is done by the destgen circuit. Figure 3.9
gives an overview of these circuits.

The operand address generation circuit Agen (figure 3.10) calculates the types and
addresses of the source registers. For each operand, the operation generation environ-
ment opgen provides signals, which point to bit fields in the instruction word. In turn,
these bit fields contain the register addresses of the operands. The type of an operand
is represented by five signals:

� The signals opi.fpr, opi.gpr, opi.spr denote the register file which holds the
operand, i.e., the floating point, general purpose, and special purpose register
file.

� The signal opi.db indicates a double precision floating point register.

� The signal opi.imm is set iff the operand is the immediate constant.

The amount of different operand types is limited for certain operand busses (table
3.2). Operand bus op1 is used for the registers pointed to by RS1 / FS1 (they share the
same bit field), RS2 (for mi2f) and SA (for movs2i). Furthermore, it is supposed to
provide the value of the FCC special purpose register to process the fbeqz and fbnez
instructions. The immediate constant is never on operand bus op1.

The second operand bus op2 has to provide the registers pointed to by RS2 / RD
/ FS2 / FD (they share the same bit field). Furthermore, it is supposed to provide the
immediate constant for ALU operations.

The operand bus op3 is only used for the rounding mode RM, which is required
for many floating point instructions. Operand bus op4 is only used for the interrupt

3.5. DECODE/ISSUE ENVIRONMENT 27

0 1

0 1

op1.db

op.db

op2.db

op.db

op1.RS1

op1.gpr

op1.RS2

op1.fpr

op1.FS1

op1.spr op1.A

op1.FCC

op1.SA

RS1/FS1
IR[25:21]

RS2
IR[20:16]

SA
IR[10:6]

op1.RS2

op1.SA

op2.RS2

op2.gpr

op2.RD

op2.FD

op2.fpr

op2.FS2

op2.spr

0

op2.A

IR[20:16]
RS2/RD/FS2/FD

Figure 3.10: Operand address generation Agen

mask, which is also required for floating point instructions. For op3 and op4, no Agen
circuit is necessary, since they are always used for the same register.

3.5.4 Operand Data Generation datagen

The operand data generation circuits generate the source operands from the addresses
and types provided by the Agen circuit. These operands are distributed by four global
data paths (table 3.4). The operand busses transport the operands to the reservation
stations. Each operand (op1.l, op2.h, op2.l, op2.h, op3.l, op4.l) consists of three com-
ponents, which are the tag, the valid bit and the operand data (table 3.5),ϑ denotes the
tag width in bits (section 3.9). Each operand bus has a datagen environment of its own.
The environments for op1 and op2 are identical (figure 3.11). The operands three and
four do not have a high part and are only used for two fixed special purpose registers.
Thus, they have a special datagen environment (figure 3.12) in order to save hardware
cost.

The operand data generation environment datagen for op1 and op2 generates one
operand according to the signals generated by the operand address generation environ-
ment Agen. The low and the high part of the operand are calculated separately, since
each part might come from a different source. For each operand and for each part, one
of the following cases applies: it is the immediate constant, it is in the register file, it
is a result currently on the CDB, it is in the ROB, or it is the result of an instruction
which has not yet completed (figure 2.5). Thus, four cascaded multiplexers are used to
select the data from the appropriate source.

28 CHAPTER 3. TOMASULO HARDWARE

Bus Items Width Purpose

op1 l ϑ+32+1 low part of the first operand
h ϑ+32+1 high part of the first operand
high 1 lowest bit of the register address

op2 l ϑ+32+1 low part of the first operand
h ϑ+32+1 high part of the first operand
high 1 lowest bit of the register address

op3 l ϑ+32+1 third operand (always integer)
op4 l ϑ+32+1 fourth operand (always integer)

Table 3.4: Components of the global data paths

Item Width Purpose

tag ϑ ROB tag of the instruction producing the operand
valid 1 valid = 1, operand contains valid data
data 32 actual operand data

Table 3.5: Components of an operand

Operand is the Immediate Constant

The first step is checking whether the operand is the immediate constant (opi.imm=1)
or not. If so, the low part of the operand is returned as follows:

tag = 0ϑ

valid = 1
data = co1

In this case, the operand is valid already during issue. The data value is generated
by the co1gen circuit (section 3.4). The high part of the operand can never be the
immediate constant, thus, it is assumed to be zero in this case to have a defined value
on the bus. The high part is also set to zero if the operand is not a double precision
floating point value.

Operand is in the Register File

If the operand is not the immediate constant, it must be a register. Thus, the second
step to get the operand is looking up its valid bit in the producer table. If the valid bit
is set, the operand is in the register file. The operand address generation environment
provides the necessary address signals opi.A, opi.fpr, opi.gpr, and opi.spr to the register
files and to the producer tables, which return the requested values as opi.l/h.RF.Dout
(register file) and opi.l/h.Prod.Dout (producer table),i 2 f1; :::;2g. The registers RM
and SR for operand three and four are directly provided by the SPR environment as
SPR.RM and SPR.SR.

3.5. DECODE/ISSUE ENVIRONMENT 29

If the operand part is in the register file (opi.l/h.Prod.Dout.valid=1), the operand
bus is set to the following values:

tag = 0ϑ

valid = 1

data =

�
R[A].data[31:0] : low part
R[A].data[63:32] : high part

Operand is on the CDB

If not so (opi.l/h.Prod.Dout.valid=0), the producer table contains the tag of the instruc-
tion which produces the desired value. Since this value might be on the CDB in the
current cycle, the tag retrieved from the producer table is compared with the tag on the
CDB. If both tags are equal and if the valid bit of the CDB is active, the operand is
forwarded from the CDB:

tag = 0ϑ

valid = 1

data =

�
CDB.data[31:0] : low part
CDB.data[63:32] : high part

Operand is in the Reorder Buffer

The operand might also be in the reorder buffer. The tag found in the producer table
is already the proper index for the ROB to check whether the result is already in the
ROB. If so, the valid bit of the ROB entry is set. For this task, ports one to six of the
ROB are used. Ports one and two are for op1.l and op1.h, ports three and four are for
op2.l and op2.h, and ports five and six are for op3 and op4.

tag = 0ϑ

valid = 1

data =

�
opi.l.ROB1.Dout.data[31:0] : low part
opi.h.ROB1.Dout.data[63:32] : high part

Operand is a Result of an Uncompleted Instruction

If none of the cases above applies, the operand must be a result of an uncompleted
instruction. The tag of this instruction can be found in the producer table. In this case,
the operand is not yet valid and the tag is turned over to the reservation station. The
data signal is set to zero in order to have a defined value on the bus.

tag =

�
opi.l.Prod.Dout.tag : low part
opi.h.Prod.Dout.tag : high part

valid = 0
data = 032

30 CHAPTER 3. TOMASULO HARDWARE

0
0

0
0

0
0

0
0

C
he

ck
 r

eg
is

te
r

fi
le

St
ep

 2

C
he

ck
 C

D
B

St
ep

 3

db

op
i.i

m
m

op
i.i

m
m

C
D

B
.d

at
a[

31
:0

]
C

D
B

.v
al

id
C

D
B

.ta
g

C
D

B
.d

at
a[

63
:3

2]
C

D
B

.v
al

id
C

D
B

.ta
g

op
i.P

ro
d.

D
ou

t.h
.ta

g
op

i.P
ro

d.
D

ou
t.l

.ta
g

op
i.R

F.
D

ou
t.d

at
a[

63
:3

2]

St
ep

 1
T

es
t f

or
 im

m
ed

ia
te

op
i.R

F.
D

ou
t.d

at
a[

31
:0

]

C
he

ck
 R

O
B

St
ep

 4

L
 O

 W

P
A

 R
 T

H
 I

 G
 H

P

A
 R

 T

op
i.l

.R
O

B
1.

D
ou

t.v
al

id
op

i.h
.R

O
B

.D
ou

t.v
al

id

op
i.l

.R
O

B
1.

D
ou

t.d
at

a[
31

:0
]

op
i.h

.R
O

B
1.

D
ou

t.d
at

a[
63

:3
2]

op
i.l

.P
ro

d.
D

ou
t.t

ag
op

i.h
.P

ro
d.

D
ou

t.t
ag

E
Q

E
Q

op
i.P

ro
d.

D
ou

t.l
.v

al
id

op
i.P

ro
d.

D
ou

t.h
.v

al
id

ta
g

va
lid

da
ta

ta
g

va
lid

da
ta

i2
f1

;2

g

01+

32
01+

32

0ϑ
1

0ϑ
1

0ϑ
1

co
1

0
0ϑ

1
032

0

ϑ
ϑ

1
1

1
1

1
1

1
1

1
1

32
32

Figure 3.11: Operand data generation datagen for op1 and op2

3.5. DECODE/ISSUE ENVIRONMENT 31

0

0

Check register file
Step 2

Check CDB
Step 3

0

CDB.valid
CDB.tag

opi.Prod.Dout.l.tag

Step 1
Test for immediate

Check ROB
Step 4

R M / M A S K O P E R A N D

opi.l.ROB1.Dout.valid

opi.l.ROB1.Dout.data[31:0]opi.l.Prod.Dout.tag

EQ

CDB.data[31:0]

opi.Prod.Dout.l.valid

does not apply

tag valid data

i 2 f3;4g

01+32

i=3: 0ϑ 1 SPR.RM
i=4: 0ϑ 1 SPR.SR

ϑ 1

1

1

1

32

Figure 3.12: Operand data generation datagen for op3 and op4

32 CHAPTER 3. TOMASULO HARDWARE

3.5.5 Destination Operand Generation destgen

The destination operand generation environment destgen calculates the type and the
address of the destination register. This circuit is similar to the address generation
environment, which performs the same task for the source operands. The register type
of destination is determined according to table 3.2 as:

dest.gpr = dest.RD_ dest.R31
dest.fpr = dest.FD
dest.spr = dest.SA_ dest.FCC

The destination is a double precision floating point value if the op.db signal is
active or if it is a cvt.s.d or ctv.i.d instruction. These instructions can be distinguished
from the other cvt instructions by IR[6] (appendix C).

dest.db = op.db_ (op.fconv^ IR[6])

The destination register address is extracted from bit fields of the instruction word
(appendix C). The positions of these bit fields depend on the instruction word layout,
which is specified by the itype and rtype signals.

dest.A =

8>>>>>><
>>>>>>:

IR[20:16] : itype^ (dest.RD_ dest.FD)
IR[15:11] : rtype^ (dest.RD_ dest.FD)
IR[10:6] : dest.SA
bin(8) (FCC) : dest.FCC
bin(31) (R31) : dest.R31
0 : otherwise

3.5.6 Stall Generation stallgen

Issue stalls occur if one or more of the following conditions hold:

1. For the given instruction, all appropriate reservation stations are busy (FUbusy
is active, section 3.5.2).

2. The instruction has to be stored in the reorder buffer, but the reorder buffer is
full (ROB.full is active, section 3.9).

3. If the instruction is a moves2i and the source register is IEEEf, an issue stall
is performed until the ROB is empty, to ensure that the register file contains
the correct value. This is necessary, since floating point instructions modify the
IEEEf special purpose register without any note in the producer table. The signal
IEEEfstall is active under this condition:

3.5. DECODE/ISSUE ENVIRONMENT 33

IEEEfstall = op.movs2î (IR[10 : 6]| {z }
source

= 00111| {z }
IEEEf

) ^ ROB.empty

Alternatively, a check for floating point instructions in the reorder buffer would
be sufficient and could increase IPC rates at higher hardware cost.

4. The instruction is a conditional branch or a jump register instruction and the
source operand op1 is not yet available. Issuing these instructions would require
speculative execution, which is part of a thesis by Mark A. Hillebrand [Hil99].
The signal bstall indicates this stall condition:

bstall=(op.branch_ op.jumpR)^ op1.l.valid

5. If the instruction is a rfe instruction, an issue stall is required until the ROB is
empty. This ensures that the ESR, EPC, and EPCn registers contain the correct
values, since they might be modified by an instruction or interrupt prior the rfe
instruction. This condition is indicated by the signal rfestall:

rfestall=op.rfê ROB.empty

In the cycle after the stall, DOrfe is activated. This signal causes the actual
register transfers, which are done in the PC environment and in the register file
environments.

DOrfe=op.rfe^ ROB.empty

6. The instruction fetch and issue stages have to be stalled if the instruction memory
system is busy (IBusy is active) in order to prevent the destruction of the PC
registers.

Furthermore, interrupts overrule any issue stall condition. This is done since the
instruction, which causes the interrupt, is always ahead of the instruction which causes
the issue stall. Thus, the issuestall signal is generated as:

issuestall=(FUbusy_ ROB.full _ IEEEfstall_ bstall_ rfestall_ IBusy)^ JISR

In case of an issue stall, the following actions are performed:

� The instruction fetch is stalled. This is done by disabling the clock enable signals
of PC0, PC1, and IR1(section 3.2).

� All D.FU i.issue signals are disabled (section 3.5.2) in order to prevent that the
instruction is written into a reservation station.

� The instruction is not stored in the reorder buffer (section 3.9).

� The producer table is not modified (section 3.5.5).

34 CHAPTER 3. TOMASULO HARDWARE

op1

op2

op3

D

op4

CDB

RS Control

Function-

Producer

unit j

result

single
adjust 1

single
adjust 2

control op1 op2 op3 op4

control op1 op2 op3 op4

control op1 op2 op3 op4

control op1 op2 op4

control op2 op3 op4

control op1 op2 op3 op4

Reservation Station 0

Reservation Station 1

CDB

CDB

CDB

op3

op1

RSvalidFUstall

Pstall FUvalid

FU j .CDBack

RS0.doe

RS1.doe

RSnj�1.doe

RS0.data

RS1.data

RSnj�1.data

Reservation Stationnj �1

Figure 3.13: A complete function unit with reservation stations

3.6 The Reservation Station Environments

3.6.1 Overview

Each function unit has its own set of reservation stations assigned to it. Figure 3.13
gives an overview of a function unit with reservation stations and the producer. The
dashed paths and circuits are extensions only needed for floating point function units.

The reservation stations form a queue for instructions and their operands which
are provided on the op1 to op4 busses. These busses originate in the decode/issue
environment. In each cycle, any desired instruction can move from its reservation
station into the function unit. For this purpose, all reservation stations are connected
to a bus with tristate drivers. The bus and the reservation stations are controlled by the
reservation station control.

If the function unit is a floating point unit, the data on this bus is adjusted in the
single-adjust-one circuit. This circuit makes sure that single precision values are in the
lower 32 bits of the bus. After leaving the function unit, the single-adjust-two circuit

3.6. THE RESERVATION STATION ENVIRONMENTS 35

makes sure that single precision values are on both lower and higher 32 bits of the bus.
After that, the result is propagated on the CDB by the producer circuit.

Integer function units do not need the single adjust circuits. The instruction is
passed unmodified to the function unit. After leaving the function unit, the result is
passed unmodified to the producer.

3.6.2 Operation of the Reservation Stations

As mentioned above, the reservation stations of a function unitj form a queue for the
instructions and their operands. Let the queue havenj reservation stations. The design
in this thesis allows any number of reservation stations. The choice ofnj only depends
on cost effectiveness. Chapter 5 contains a comparison of different assignments.

New instructions are always issued in-order into the first reservation station (reser-
vation station 0). The input values for reservation station 0 are generated by the de-
code/issue environment.

For each operand of an instruction, a valid bit and tag bits are stored in the reser-
vation station. The valid bit is set iff the operand is already in the data item of the
reservation station. An instruction in a reservation station is said to be valid if all its
operands are available, i.e., valid. If not so, the tag bits hold the tag of the instruction
which generates the operand. In this case, the operand circuits snoop on the CDB for
the missing operands. The operand circuit compares the tag on the CDB to the tag
stored in its register. If both are equal and if the valid bit of the CDB is active, the data
item of the CDB is clocked into the data item of the operand.

As soon as one or more instructions in the queue become valid, the oldest among
these instructions is dispatched into the function unit and removed from the queue.
The reservation station control calculates the necessary output enable signals.

In each cycle, an instruction in reservation stationi moves into reservation station
i +1, unless reservation stationi +1 is full and cannot be freed by moving its content
into reservation stationi +2 or by dispatching the instruction into the function unit.
The reservation station control calculates the necessary clock enable signals.

3.6.3 Implementation of the Reservation Stations

Each reservation station can hold the operation code and the operands of one instruc-
tion. An implementation of an integer reservation station is given in figure 3.14. The
reservation station has a register for the full bit, the tag bits and an operation code op.
The full bit indicates that the reservation station is in use. The tag data item is the ROB
tag of the instruction in the reservation station. The coding of the op data item depends
on the interface to the function unit.

The values in reservation stationi are updated if the RSi.fill signal is active. The

36 CHAPTER 3. TOMASULO HARDWARE

RSi.opx RSi�1.opx new value of
fill readCDB readCDB RSi.opx.data

0 0 * RSi.opx.data
0 1 * CDB.data
1 * 0 RSi�1.opx.data
1 * 1 CDB.data

Table 3.6: Calculation of the new value of a reservation station operand

new values for the reservation station are selected in dependence of the RSi.clear sig-
nal. If active, the reservation station is filled with an empty entry. If not active, the
content of the previous reservation station RSi�1 is copied. The reservation station is
also cleared in case of an interrupt, as indicated by the JISR signal. Thus, the content
of RSi is calculated as follows:

RSi =

8<
:

/0 : (RSi.fill ^ RSi.clear)_ JISR
RSi�1 : RSi.fill ^RSi.clear̂ JISR
RSi : RSi.fill ^JISR

The clear signal only affects the op, tag, and full bits, which are set to zero by a
multiplexer. The other registers of the reservation station are not cleared in order to
save hardware cost.

Integer function units require two 32 bits wide operands. Each operand has its own
box (figure 3.15). Each operand has three components, which are the valid, tag, and
data component. The valid bit is set iff the operand is already in the reservation station,
i.e., in the data component of the operand register. If not so, the tag bits contains the
ROB tag of the instruction which produces the operand. Reservation station operands
are updated in two ways: The first way is to copy the content of the same operand in
the previous reservation station. This is done iff the fill signal is active. The second
way is to copy the content of the corresponding components of the CDB. This is done
if the readCDB signal is active, which is calculated as follows:

readCDB = (CDB.tag=RSi.opx.tag)^ RSi.opx.valid^ CDB.valid

If readCDB is active, the reservation station operand provides the new value (i.e.,
the value on the CDB) as output to the next reservation station and to the function unit.
The forwarding of the CDB data is essential for the following reasons: The operand
is only one cycle on the CDB. If the data in a reservation station moves into the next
reservation station, the operand on the CDB must be written into the next reservation
station. Table 3.6 lists how the content of a reservation station operand is calculated.

Furthermore, the valid signal of the reservation station operand becomes active
in the same cycle in which readCDB is active. This allows dispatching instructions

3.6. THE RESERVATION STATION ENVIRONMENTS 37

0 1

op tag full

control

Operand op1
Reservation Station

Operand op2

op1.l CDB

in infillCDB CDB

valid out

fill

valid out

Reservation Station

low low

op2.l

F R O M P R E V I O U S R S

fill

JISR

clear
0

op1.valid op2.valid

control op1.l op2.l

T O N E X T R S

valid

data

op1.valid

op2.valid

full

Figure 3.14: Reservation station for integer function units

in the same cycle they received their operands via the CDB. This is a performance
optimization only and does not affect correctness.

Floating point function units require six operands: two 64 bits wide operands (split
into low and high part, respectively) and the rounding moderm and the interrupt mask
mask. The interrupt mask is needed by the rounder, since the result of an IEEE floating
point operation depends on the interrupt mask [Ins85, EP97]. The implementation of
the floating point reservation station is identical to the implementation of an integer
reservation station except for the additional operands. An implementation of a floating
point reservation station is in figure 3.16. The implementation of the operand circuits
of a floating point reservation station is identical to the implementation of the operand
circuits of an integer reservation station.

3.6.4 Reservation Station Control

Dispatch Control

The reservation station control (figure 3.17) autonomously governs the dispatch of the
valid instructions of the reservation stations into the function unit. Let RS0,...,RSnj�1

be the reservation stations of function unit FUj .

The RSi.doe signal is set iff the instruction in reservation stationi is dispatched into
the function unit. This transfer is done by a special bus. Each reservation station can

38 CHAPTER 3. TOMASULO HARDWARE

0 1

CDB.data

in CDB

1 0

fill

valid tag data

EQ

CDB.tag

CDB.valid

valid out

readCDB

readCDB

readCDB

Figure 3.15: Reservation station operand

write on this bus. RSi.doe is the output enable signal of the bus driver of reservation
stationi.

The correctness proof (chapter 6) relies on choosing the oldest among the valid
instructions. Since new instructions are always placed in reservation station 0, the
oldest valid instruction is obviously in the reservation station with the highest index
among the valid reservation stations. Let RSα be the reservation station which is to
become dispatched.

α = maxfi 2 f0; :::;nj �1g j RSi.valid=1g

The RSi.valid signals are provided by the reservation stations. The max is calcu-
lated by a find last one (FLO) circuit (appendix A.1). The circuit returnsα in unary
representation. LetAi denote this output. The dispatch has to be stalled if the function
unit is stalled as indicated by the FUstall signal:

RSi.doe =Ai ^ FUstall

At most one of the RSi.doe signals has to be set in order to prevent bus contention.
This is ensured by the find last one circuit.

Flow Control Signals

The reservation station control generates two flow control signals: The RSvalid and
FU j .full signal.

3.6. THE RESERVATION STATION ENVIRONMENTS 39

0
1

op

 t
ag

 f

ul
l

co
nt

ro
l

R
es

er
va

tio
n

St
at

io
n

O
pe

ra
nd

 o
p1

.h

op
1.

l
op

1.
h

in
fi

ll
C

D
B

va
lid

ou
t

O
pe

ra
nd

 o
p1

.l

in
C

D
B

va
lid

ou
t

fi
ll

R
es

er
va

tio
n

St
at

io
n

O
pe

ra
nd

 o
p2

.l

in
C

D
B

va
lid

ou
t

fi
ll

R
es

er
va

tio
n

St
at

io
n

O
pe

ra
nd

 o
p2

.h

in
C

D
B

va
lid

ou
t

fi
ll

R
es

er
va

tio
n

St
at

io
n

O
pe

ra
nd

 r
m

in
C

D
B

va
lid

ou
t

fi
ll

R
es

er
va

tio
n

St
at

io
n

O
pe

ra
nd

 m
as

k

in
C

D
B

va
lid

ou
t

fi
ll

R
es

er
va

tio
n

St
at

io
n

op
2.

l
op

2.
h

op
3

op
4

lo
w

lo
w

hi
gh

lo
w

lo
w

hi
gh

F
R

 O
 M

P

R
 E

 V
 I

 O
 U

 S

R
 S

C
D

B

JI
SR

cl
ea

r

fi
ll

0

op
1.

l.v
al

id
op

1.
h.

va
lid

op
2.

l.v
al

id
op

3.
va

lid
op

2.
h.

va
lid

op
4.

va
lid

op
4

op
3

op
2.

h
co

nt
ro

l

T
 O

N

 E
 X

 T

R
 S

op
1.

l
op

1.
h

op
2.

l

va
lid

da
ta

op
1.

l.v
al

id

op
1.

h.
va

lid

op
2.

h.
va

lid

op
3.

va
lid

op
4.

va
lid

fu
ll

op
2.

l.v
al

id

Figure 3.16: Reservation station for floating point function units

40 CHAPTER 3. TOMASULO HARDWARE

The RSvalid signal is active iff data is dispatched into the function unit. This is
true iff there is at least one valid reservation station and the function unit is not stalled.
Thus:

RSvalid =

nj�1W

i=0
RSi .valid

!
^ FUstall

= Zero(RS0.valid,...,RSnj�1.valid) NOR FUstall

The find last one circuit (appendix A.1) has a built-in zero tester, so that the signal
can be generated with a single NOR gate.

The FUj .full signal is active iff the reservation stations of function unitj are not
able to accept an instruction. However, even if all reservation stations of a function
unit are full, an instruction can be issued into a reservation station by dispatching one
instruction into the function unit if the function unit itself is not stalled.

FU j .full =
nj�1V

i=0
RSi.full ^ RSvalid

In case of an active FUj .full signal, the decode/issue environment does not generate
a FUj .issue signal for the function unit.

Queue Control Signals

The reservation station control also computes the RSi.fill and RSi.clear signals. As de-
scribed above, RSi.fill is active iff entry i is to be filled with new values. The RSi.clear
signal controls whether to clear the reservation station or to copy the data of its prede-
cessor RSi�1. In case of the first reservation station RS0, the data of the predecessor
is the instruction provided by the decode/issue environment. The clear signal of a
reservation station is only used in the following cases:

� It is used if the entry of the previous reservation station is dispatched and there-
fore leaves the reservation station queue.

� It is used in case of the first reservation station, if no instruction is issued into
the first reservation station.

The calculation of the queue control signals is non-trivial and recursively defined
as follows:

i = nj �1: The last reservation station does not have a successor. It is filled with
the data of its predecessor iff its content is dispatched into the function unit
(RSnj�1.doe=1) or if it is empty (RSnj�1.full=0):

3.6. THE RESERVATION STATION ENVIRONMENTS 41

RSnj�1.fill = RSnj�1.doe_ RSnj�1.full

If the content of the predecessor (i.e., RSnj�2) is dispatched into the function
unit, it must not become copied. Thus, the clear signal of the last reservation
station is active in this case:

RSnj�1.clear = RSnj�2.doe

Table 3.7 contains a list of the possible values.

i 2 f1; :::;nj �2g: For RS1 to RSnj�2, the calculation of the RSi.fill signal is slightly
modified, since these reservation stations have a successor. The signal RSi.fill is
also active if RSi+1 takes over the content of RSi.

RSi.fill = RSi.doe_ RSi.full _ RSi+1.fill

The calculation of the clear signal is identical to the calculation in the previous
case.

RSi.clear = RSi�1.doe

i = 0: The first reservation station does not have a predecessor. The input values for
the first reservation station are provided by the decode/issue environment. These
values are only valid if an instruction is issued into the first reservation station of
function unit j. Thus, the reservation station is filled with an empty entry except
on issue:

RS0.clear =D.FUj .issue

The calculation of the fill signal of reservation station zero is identical to the
calculation in the general case.

In order to resolve the recurrency in the formulae of the RSi.fill signals, define a
set of signalsF j(i) as:

F j(i) = RSi.doe_ RSi.full

Now, a closed formula for RSi.fill can be specified fori 2 f0; :::;nj �1g:

RSi.fill =
nj�1W

k=i
F j(k)

Since OR is associative, a parallel prefix circuit can be used in order to compute
the RSi.fill signals (figure 3.17).

42
C

H
A

P
T

E
R

3.
T

O
M

A
S

U
LO

H
A

R
D

W
A

R
E

RSnj�2.full RSnj�1.full RSnj�2.doe RSnj�1.doe RSnj�1.clear RSnj�1.fill action in RSnj�1

0 0 0 0 0 1 copy previous RS, which is empty
0 1
1 0 not possible
1 1

0 1 0 0 0 0 no action
0 1 0 1 copy previous RS, which is empty
1 0 not possible
1 1 not possible

1 0 0 0 0 1 copy instruction in previous RS
0 1 not possible
1 0 1 1 clear RS, although already empty
1 1 not possible

1 1 0 0 0 0 no action
0 1 0 1 replace the current instruction with instruction in previous RS
1 0 1 0 no action
1 1 not possible

Table 3.7: Deduction of the RSnj�1.clear and RSnj�1.fill signals

3.6. THE RESERVATION STATION ENVIRONMENTS 43

AND

zero

n n

RSvalid

n

FU j .full

FUstall RSi.fullRSi.full

RSi.doe

RSi.doeRSi.valid

RSi.fill

i 2 f0; :::;nj �1g

nj nj

njnj

1

1

1

nj -bit FLO

nj -bit Parallel Prefix (OR)

Figure 3.17: Reservation station control

Correctness

The correctness of the calculation of the queue control signals RSi.fill and RSi.clear is
an implication of the following three claims:

Claim 1: Issued instructions are stored in RS0.

Proof of Claim 1: During issue, D.FUj .issue is active (page 25), and therefore FUj .full
is inactive. This implies that there is either an empty reservation station or that there
is a reservation station which is being dispatched. In either case, there is at least
one reservation station RSi with RSi.fill=1. Thus, RS0.fill is active, and RS0.clear is
inactive. The instruction is therefore stored in RS0.

Claim 2: No instruction in a reservation station gets lost, i.e., it is either dispatched to
the function unit or remains in a reservation station.

Claim 3: Reservation stations, which are copied or dispatched, are cleared or over-
written afterwards. Reservation stations, which are dispatched, are not copied.

Proof of claim 2 and 3: Let instruction I be in RSi. If instruction I is dispatched
(i.e., RSi.doe is active), claim 2 is obvious. Claim 3 follows from RSi.fill=1 and
RSi+1.clear=1.

Let instruction I not be dispatched (i.e., RSi.doe=0). We will now show that I then
either moves to the next reservation station RSi+1 or stays in RSi. For that purpose, we
distinguish the cases that the signal RSi+1.fill is active or inactive.

Let RSi+1.fill=1. The RSi+1.clear signal is inactive because of RSi.doe=0, and thus
the entry is copied into RSi+1 and claim 2 follows. Claim 3 holds because of RSi.fill=1,
which is true because of RSi+1.fill=1.

44 CHAPTER 3. TOMASULO HARDWARE

Let RSi+1.fill=0. The claim 3 does not apply because the entry is neither dispatched
nor copied. Claim 2 only applies for RSi if it contains an instruction, i.e., RSi.full=1.
We distinguish two cases:

� If i is nj �1, i.e., if the reservation station is the last reservation station in the
queue, RSi.fill is calculated as:

RSnj�1.fill = RSnj�1.doe_ RSnj�1.full

Since RSnj�1.doe=0 and RSnj�1.full=1, the fill bit RSnj�1.fill is inactive, and the
entry therefore remains in the queue.

� If i is notnj �1, RSi.fill is calculated as:

RSi.fill = RSi.doe| {z }
0

_ RSi.full| {z }
0

_ RSi+1.fill| {z }
0

= 0

3.6.5 Single Adjust

The single adjust circuits are only used in floating point function units. They are
controlled by three signals, which are stored in the op data item of each reservation
station. The op1.high, op2.high, and dest.high signals are the least significant bits of
the register address of operand one, two, and the destination, respectively. The db
signal is active iff the operation has double precision source registers.

Before the function unit, the operands one and two from the reservation station
pass the single-adjust-one circuit. Double precision operands are passed unmodified
(opx.high is false in this case, since double precision operands always have even reg-
ister addresses). If single precision operands are used (the db signal is not active), it
ensures that the operand is always in the lower 32 bits of the data path. The upper 32
bits are set to zero, which is a requirement of the floating point function units used in
this design. Table 3.8 lists the results of the circuit in dependence of the input signals.
An implementation of this function is given in figure 3.18.

After leaving the function unit, the single-adjust-two circuit between the function
unit and the producer part of the reservation station reverts this procedure. It ensures
that a single precision result is both on the low and on the high part of the CDB to
avoid any possible alignment problems. The implementation is given in figure 3.19.

3.6.6 The Producer

The producer (figure 3.20) propagates the results of an associated function unit on the
CDB. Table 3.9 lists all components of the CDB. The producer has to generate a value
for all components. The function unit provides a signal FUvalid. If FUvalid is set, the

3.6. THE RESERVATION STATION ENVIRONMENTS 45

Inputs Result
high db low part high part

0 0 data[31:0] 032

1 0 data[63:32] 032

0 1 data[31:0] data[63:32]
1 1 not possible

Table 3.8: Single adjust before function unit for one operand. The input from the
reservation is data[63:0].

0 1 0 1

low high
64

0

1 0
op1.high db

32 32 32

64

op1.data

op1.data

op2.high db
01

0
32

64

32

low high
64

32

op2.data

op2.data

Figure 3.18: Single adjust before function unit

highlow

0 1

data

low high

dest.high

64

3232

Figure 3.19: Single adjust after function unit

46 CHAPTER 3. TOMASULO HARDWARE

valid tag result / flags

FUi.CDBack

CDB

/Pstall

FUi.CDBreq

/pup

Pstall

Figure 3.20: Producer

function unit delivers a result, result flags (ovf, IEEE flags, etc), and the tag. These
values are stored in registers. In the same cycle, the producer requests the CDB for
the next cycle at the CDB control by raising FUj .CDBreq. Lett be the cycle of the
request.

In case of an acknowledgement (FUj .CDBack=1) by the CDB control in cycle
t+1, the values in these registers are put on the CDB, and the register is filled with the
next result. If the CDB control does not acknowledge the request within cyclet +1,
the values stay in the registers, the function unit is stalled with the signal Pstall, and
the producer requests the CDB again for cyclet +2.

Let FUj .P be the register of the producer part of function unitj. The Pstall sig-
nal stalls the whole function unit. Alternatively, the function unit might contain a
stall engine. The Pstall signal is active, if there is an instruction in the producer
register stage (FUj .P.valid=1) and if there is no acknowledge from the CDB control
(FU j .CDBack=0). The valid bit from the register is forced to be zero in the power-up
cycle (pup=1). Thus, Pstall is calculated as follows:

Pstall =FU j .CDBack^ pup^ FU j .P.valid

The CDB is requested iff the function unit provides a result (FUvalid=1) or iff
there is a result in the register and no acknowledge from the CDB control (Pstall=1).

FU j .CDBreq = FUvalid_ Pstall

3.7. FUNCTION UNIT ENVIRONMENTS 47

Bus Items Width Purpose

CDB tag ϑ ROB tag of the instruction producing the result
valid 1 CDB.valid= 1, CDB contains valid data
data 64 actual result
mal 1 misaligned memory access
Dpf 1 page fault during data memory access
ovf 1 overflow in ALU instruction
IEEEf 5 IEEE conforming floating point flags
EData 32 exception data

Table 3.9: Components of the CDB

3.7 Function Unit Environments

The function unit environments contain the function units, which are the ALU, floating
point units, and the data memory interface (table 3.3). These environments belong to
the execute stage.

3.7.1 Integer Function Unit

The integer function unit performs traditional ALU functions and shifting. Table 3.10
defines the interface to this function unit. It contains the coding of the operation control
signals op[4:0]. The unit can generate one exception (FXU overflow). The exception
can be suppressed by a bit in the opcode. This test is done in the ALU itself.

Figure A.4 (appendix A, page 100) gives the implementation of the integer func-
tion unit, which is taken almost literally from [MP95]. During issue, the op[] signals
are calculated from corresponding bits in the instruction word as follows: The ALU
function is defined by bits in the opcode. The position of these bits depends on the in-
struction format. Instructions with itype format (op.itype=1) use IR[30] and IR[28:26]
for this task. Instructions with rtype format use IR[5:0]. The circuit in figure 3.21
selects the correct signals.

3.7.2 Floating Point Function Units

With respect to cost and delay, the floating point units are taken from [Lei98]. Never-
theless, the design supports any function units which comply with the interface. Since
each function unit can generate an independent stall signal, even function units with
variable latency can be used.

In contrast to [Lei98], each function unit is assumed to have a rounder of its own.
However, this is only relevant for cost, delay, and CPI calculation. The scheduling al-
gorithm itself does support sharing of floating point unit parts between function units,

48 CHAPTER 3. TOMASULO HARDWARE

op[4] op[3] op[2] op[1] op[0] Function

0 0 0 0 0 a<< b
0 0 0 1 0 a>> b
0 0 0 1 1 a>> b (arithmetic)
1 0 0 0 0 a+b with test of overflow
1 0 0 0 1 a+b without test of overflow
1 0 0 1 0 a�b with test of overflow
1 0 0 1 1 a�b without test of overflow
1 0 1 0 0 a^b
1 0 1 0 1 a_b
1 0 1 1 0 a�b
1 0 1 1 1 b[0 : 15]016

1 1 0 0 1 a> b ? 1 : 0
1 1 0 1 0 a= b ? 1 : 0
1 1 0 1 1 a� b ? 1 : 0
1 1 1 0 0 a< b ? 1 : 0
1 1 1 0 1 a 6= b ? 1 : 0
1 1 1 1 0 a� b ? 1 : 0

Table 3.10: Coding of integer operations

0
1

0
1

0
1

0
1

op[4]

op.itype

IR[5]

1

op[3]

op.itype

IR[3]

IR[30]

op[2]

op.itype

op[1:0]

op.itype

IR[1:0]

IR[27:26]

IR[2] IR[5]

IR[28]

Figure 3.21: Calculation of op[4:0] for the ALU

3.8. CDB CONTROL ENVIRONMENT 49

Purpose Latency # RS

floating point addition and substraction 5 2
floating point multiplication 5 2
floating point division 15 1
conversion floating point / integer 4 1
floating point condition tests 1 1

Table 3.11: Floating point function units

which results in big cost savings. However, since no CPI simulations are available for
floating point units with shared rounder, separate rounder are used to keep the machine
comparable. For the same reason, the list of floating point function units (table 3.11)
is taken from [Ger98]. The table also lists the number of reservation stations which
belong to each function unit. Floating point reservation stations are very expensive re-
garding hardware cost. Thus, it is advisable to combine the multiplication/division FU
and the conversion/test FU to save two sets of reservation stations. Again, simulations
for this configuration are missing.

One third of the cost of a floating point reservation station is caused by the operand
entries for the rounding mode and the interrupt mask. In order to save this cost, it is
possible to encode the rounding mode RM in the instruction opcode (there is still room
left, appendix C). Furthermore, forwarding of the interrupt mask is not cost efficient,
since it changes rarely. It is only required in the rounder which is in the last stages
of each floating point function unit. Due of that, it is more cost efficient to design a
floating point function unit which directly reads the interrupt mask from the register
file as soon as an instruction arrives at the rounder stage. If the interrupt mask is not
valid, the function unit could generate a stall signal.

The implementation of floating point units is beyond this thesis. The actual oper-
ation performed by the FU is determined by IR[8:0]. These bits are forwarded to the
reservation station during issue as part of the op bits.

3.8 CDB Control Environment

The CDB control environment allocates the CDB to the function units. The CDB is
requested by the producer of the function uniti by raising FUi.CDBreq. The CDB
control environment generates exactly one FUj .CDBack in the next cycle. Figure 3.22
gives an implementation.

3.8.1 Deduction

Let n be the total number of producers and let FUi(t).CDBreq and FUi(t).CDBack be
the request and acknowledge signals of function uniti 2 f0; :::;n�1g in cyclet. Now,

50 CHAPTER 3. TOMASULO HARDWARE

R (t) andA(t) are defined as follows:R (t) contains the producers which request the
CDB in cyclet. A(t) contains the active acknowledge signals in cyclet.

R (t) = fi 2 f0; :::;n�1g j FUi(t).CDBreq= 1g
A(t) = fi 2 f0; :::;n�1g j FUi(t).CDBack= 1g

In each cyclet, multiple producers might be requesting the CDB. The CDB control
has to choose exactly one because only one unit can use the CDB. The correctness
proof of the Tomasulo scheduling algorithm with reorder buffer requires a guaranty
that any unit requesting the CDB will get an acknowledgement within a finite limit of
time (chapter 6). This is done by allocating the CDBround robin . This leads to the
following algorithm for the calculation of the acknowledge signals:

1. Since only one unit can get the CDB,α(t) can be defined as:

α(t) = i () A(t) = fig

Thus, it is required that there is exactly one function unit which gets the CDB
for each cycle. The producer has to put defined values (with CDB.valid=0)
on the CDB if it does not have real data. If there is only one request for the
CDB for a given cycle, the calculation ofα(t +1) is obvious. In case of more
requests, round robin scheduling requires that the CDB is assigned to the unit
which comes next after the unit which got the CDB in the previous cycle. In
case of the last unit, the next unit is the first one.

2. M (t) contains the producers which have higher indices thanα(t). It is defined
as:

M (t) = fi 2 f0; :::;n�1g j i > α(t)g

3. The requests from these producers are inR high(t):

R high(t) = R (t)\M (t)

4. Now,α(t) can be defined inductively. In the first (powerup) cycle,α is forced to
be zero, i.e., the first function unit gets the CDB. The processing ofα(t +1) is
done as follows: If there are no requests,α remains the same. If there is one or
more request, the first step is to check the requests of units inR high(t). If there
are no such requests, the request with the lowest index is acknowledged.

α(0) = 0

α(t +1) =

8<
:

α(t) : R (t) = /0
min(R high(t)) : R high(t) 6= /0

min(R (t)) : otherwise

3.8. CDB CONTROL ENVIRONMENT 51

0 1

Yn-1

Y0X0

Xn-1

Yn-2Xn-2

in0

in1

in n-1

in n

in n+1

in 2n-1

out0

out1

out n+1

out n

out n-1

out 2n-1

Find First One
2n Bit

zero

Prefix
Parallel

pup

n

n

FU j .CDBack

FU j .CDBack

FU0.CDBreq

FU0.CDBreq

FU1.CDBreq

FU1.CDBreq

FUn�1.CDBreq

FUn�1.CDBreq

10n�1

Figure 3.22: Common data bus control

3.8.2 Implementation

� TheR (t) set, which contains the requests for the CDB, is provided by the pro-
ducers of the function units as FUj (t).CDBreq.

� TheA(t) set is taken from a register, i.e., this register contains the FUj(t).CDBack
signals.

� M (t) is the set of producers with higher indices thanα(t):

i 2M (t) , i > α(t)
, 8 j 2 fi; :::;n�1g : j 62A(t)

,
n�1V

j=i
FUj(t).CDBack

Let Mi(t) denote thati lies in M (t), thus:

Mi(t) = 1, i 2M (t)

Now, Mi(t) is calculated as follows:

Mi(t) =
n�1W

j=i
FUj(t).CDBack

52 CHAPTER 3. TOMASULO HARDWARE

This calculation is done by a parallel prefix circuit, since OR is associative. The
outputs of the parallel prefix circuit are inverted to get the final signals ofM .

� The implementation ofR (t)\M (t) is obvious:

j 2 (R (t)\M (t)) , (j 2 R (t))^ (j 2M (t))
(R (t)\M (t)) j = R j(t)^M j(t)

� The two minimum operations for the calculation ofα(t+1) are combined in one
2n-bit find first one circuit to save cost and delay. The lowern-bit input signals
of the circuit are connected to theR high(t) bits calculated in the previous step.
The input signalsn to 2n�1 are connected toR (t)

If R (t) is empty, the zero output of the find first one circuit is active. This
disables the clock enable signal of the register which holds the acknowledge
signals.

If R high(t) is not empty, the find first one circuit returns min(R high(t)) in output
bits 0 ton�1. The output bitsn to 2n�1 are zero in this case.

If R high(t) is empty, the find first one circuits returns zero in output bits 0 to
n�1 and min(R (t)) in output bitsn to 2n�1. The bitsn to 2n�1 are mapped
onto bits 0 ton�1 with n OR gates. This bit set isA(t +1) and is stored in the
register.

3.9 Reorder Buffer Environment

The reorder buffer realizes in-order termination which is essential for precise inter-
rupts. An introduction on reorder buffers is given in chapter 2.

The size of the reorder buffer has a significant impact on the CPI rate [Ger98].
For this thesis, a reorder buffer withΘ=16 entries is assumed, which is a cost efficient
size, as shown by simulations. The size is assumed to be a power of two. The buffer
requiresϑ = log2 Θ = 4 address bits (i.e., tag bits).

The reorder buffer itself is realized with two RAMs: ROB1 and ROB2. Table 3.12
lists all components of the ROB, their purpose and size, and the RAM they belong to.
This separation saves cost and delay since the values in ROB2 are only used during
retire and for the destination operand during issue. For these values, the forwarding
read ports are saved. Table 3.13 shows the use of the ports.

ROB1 is a nine portΘ� 105 RAM (figure 3.23). ROB2 is a two portΘ� 78
RAM. The reorder buffer is organized as circular FIFO queue. It is addressed by two
pointers: ROB.tail is the tail pointer and points to the target entry for new instructions.
ROB.head is the head pointer and points to the next instruction for retire.

The head and tail pointers are maintained by two circuits which are identical to the
circuits in [Lei98]. They provide ROB.head and ROB.tail and are controlled by two

3.9. REORDER BUFFER ENVIRONMENT 53

clock enable signals, ROB.headce and ROB.tailce, respectively. If the clock enable
signal of a circuit is active, the corresponding pointer is incremented by one (with
warp-around) in each cycle. In case of an interrupt, both pointers are set to zero. An
implementation of both circuits is in figure A.5 (appendix A, page 101).

Another auxiliary circuit, which is also taken from [Lei98], calculates the ROB.full
signal. If set, the signal indicates that the ROB is full. Furthermore, the circuit provides
ROB.empty, which is active iff the ROB is empty. The circuit is controlled by the same
control signals used for ROB.head and ROB.tail (figure A.6, appendix A, page 101).

3.9.1 Issue

During issue, the ROB entry pointed to by ROB.tail is allocated and initialized for the
new instruction. This is done via port eight of the ROB. The write enable signal of
this port is active iff issuestall is inactive, i.e., when an issue is performed. During
issue, the tail pointer is incremented. The tail pointer is cleared during JISR. Thus, the
ROB.tailce signal is calculated as:

ROB.tailce = JISR_ issuestall

The valid data item is initialized with one, iff the instruction is not passed to a
function unit. This is indicated by the noFU signal, which is generated by the control
automaton. The data and IEEEf items are filled with dummy data to have defined
values in the ROB.

dest.ROB1.Din.valid = noFU
dest.ROB1.Din.data = 064

dest.ROB1.Din.IEEEf = 05

The dmal, Dpf, ovf, and IEEEf data items are used for interrupt processing. They
indicate exceptions which can occur during the execution phase of an instruction and
they are initialized with zero. In case of a trap instruction, EData contains the imme-
diate constant co1 from the instruction register environment, which allows passing of
an argument to the interrupt service routine.

dest.ROB1.Din.EData = co1

The ill, imal, Ipf, trap, and uFOP items of the ROB2 RAM are used for exceptions
which occur during fetch or decode/issue. They are initialized with the corresponding
signals provided by the decode/issue environment.

dest.ROB1.Din.ill = op.ill
dest.ROB1.Din.imal = imal1
dest.ROB1.Din.Ipf = pff1
dest.ROB1.Din.trap = op.trap
dest.ROB1.Din.uFOP = op.iuFOP

54 CHAPTER 3. TOMASULO HARDWARE

The ROB2 RAM contains data items dest, db, gpr, fpr, and spr. These items spec-
ify the register file, the register file address and the operand width (double or single)
for writeback. They are initialized by the corresponding values generated by the de-
code/issue environment (section 3.5).

dest.ROB2.Din.dest = dest.A
dest.ROB2.Din.db = dest.db
dest.ROB2.Din.gpr = dest.gpr
dest.ROB2.Din.fpr = dest.fpr
dest.ROB2.Din.spr = dest.spr

For the calculation of EPC and EPCn after the interrupt, the following additional
information is required: the PC of the instruction and the branch/jump target from the
PC environment. The bj data item is active iff the instruction in the ROB entry is a
branch or jump instruction.

dest.ROB2.Din.PC = opc1
dest.ROB2.Din.target = target1
dest.ROB2.Din.bj = branch_ jump_ jumpR

3.9.2 Retire

On retire, a result is fetched from the head of the reorder buffer and written into the
register file. This is done with ROB port seven. The conditions for retire are that the
ROB must not be empty and that the entry at the head is valid.

retire = /ROB.emptŷ ROB.p7.Dout.valid

During retire, the ROB head pointer is incremented. The head pointer is cleared
during JISR. Thus, the ROB.headce signal is calculated as:

ROB.headce = JISR_ ROB.retire

Before the actual writeback, interrupts are checked (almost identical to [MP95]1).
The first step is to collect the occurred interrupts in in CA[i]. CA[i] is active iff an
interrupt of priorityi occurred. Table 3.14 lists all interrupts and their priority. Lower
numbers denote higher priority. CA[0] is the reset interrupt. It is triggered by pup,
the power-up signal, in any case, even if there is no instruction to interrupt. CA[1] to
CA[12] are internal interrupts. Their event signals are stored in the ROB. These event
signals are only valid during retire therefore.

1MCA[6] must be masked in contrast to [MP95].

3.9. REORDER BUFFER ENVIRONMENT 55

A1

Din8

w8

A8

4

134

1

4

ROB 1

134

1

4

Din9

w9

A9

Dout1
134

A2

A3

A4

A5

A6

Dout2

Dout3

Dout4

Dout5

Dout6

4

4

4

4

4

Dout7

134

134

134

134

134

134
A7

4

Din8

w8

A8

73

1

4

Dout7
wb.ROB2.Dout73

A7
4

ROB 2

op1.l.Prod.Dout.tag

op1.h.Prod.Dout.tag

op2.l.Prod.Dout.tag

op2.h.Prod.Dout.tag

op3.l.Prod.Dout.tag

op4.l.Prod.Dout.tag

ROB.tail

/issuestall

dest.ROB1.Din1

CDB.tag

CDB.valid

CDB (without tag)

ROB.head

ROB.tail

/issuestall

dest.ROB2.Din

op1.l.ROB1.Dout

op1.h.ROB1.Dout

op2.l.ROB1.Dout

op2.h.ROB1.Dout

op3.l.ROB1.Dout

op4.l.ROB1.Dout

wb.ROB1.DoutROB.head

Figure 3.23: Reorder buffer

56 CHAPTER 3. TOMASULO HARDWARE

Name Width ROB Purpose

valid 1 ROB1 valid = 1, data contains a valid value
data 64 ROB1 result data
dmal 1 ROB1 misaligned data memory access
Dpf 1 ROB1 data memory page fault
ovf 1 ROB1 overflow in ALU instruction
IEEEf 5 ROB1 IEEE flags (only used by floating point instr.)
EData 32 ROB1 exception data

∑ 105
ill 1 ROB2 illegal instruction
imal 1 ROB2 misaligned instruction memory access
Ipf 1 ROB2 instruction memory page fault
trap 1 ROB2 trap= 1, instruction is a trap instruction
uFOP 1 ROB2 unimplemented floating point instruction
dest 4 ROB2 destination register address
db 1 ROB2 db= 1, result has double precision
fpr 1 ROB2 fpr = 1, dest is a floating point register
spr 1 ROB2 spr= 1, dest is a special purpose register
gpr 1 ROB2 gpr= 1, dest is a general purpose register
PC 32 ROB2 PC of the instruction
target 32 ROB2 target / fallthrough address
bj 1 ROB2 bj = 1, instruction is a branch/jump

∑ 78

Table 3.12: Components of a reorder buffer entry

Port Use Purpose

1 read only ROB1 Forwarding of low part of operand 1
2 read only ROB1 Forwarding of high part of operand 1
3 read only ROB1 Forwarding of low part of operand 2
4 read only ROB1 Forwarding of high part of operand 2
5 read only ROB1 Forwarding of operand 3
6 read only ROB1 Forwarding of operand 4
7 read only ROB1, ROB2 Retire
8 write only ROB1, ROB2 Issue (destination)
9 write only ROB1 Completion

Table 3.13: Use of the reorder buffer ports

3.9. REORDER BUFFER ENVIRONMENT 57

Interrupt Symbol Priority Resume Maskable External

reset reset 0 abort no yes
illegal instruction ill 1 abort no
misaligned access mal 2
page fault IM Ipf 3 repeat
page fault DM Dpf 4
trap trap 5 continue
FXU overflow ovf 6 continue yes no
FPU overflow fOVF 7
FPU underflow fUNF 8 abort/
FPU inexact result fINX 9 continue
FPU divide by zero fDBZ 10
FPU invalid operation fINV 11
FPU unimplemented uFOP 12 continue no
external I/O exj 12+j continue yes yes

Table 3.14: Interrupts and coding of SR/CA

The misaligned access (mal) interrupt indicates both instruction memory and data
memory misaligned accesses, which have separate event signals in the ROB. The cal-
culation of CA[2] is different therefore. CA[13] to CA[31] are left over for external
interrupts with event signals ex1 to ex19.

CA[i] =

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

pup : i = 0
retire^ROB.p7.ill : i = 1
retire^ (ROB.p7.dmal_ROB.p7.imal) : i = 2
retire^ROB.p7.Ipf : i = 3
retire^ROB.p7.Dpf : i = 4
retire^ROB.p7.trap : i = 5
retire^ROB.p7.ovf : i = 6
retire^ROB.p7.IEEEf[i-7] : 7� i � 11
retire^ROB.p7.uFOP : i = 12
retire^exi�12 : i � 13

Most interrupts aremaskable(table 3.14). The service of interrupti can be sup-
pressed by setting SR[i] to zero. MCA contains the occurred interrupts which are not
masked.

MCA[i] =

�
CA[i] : i � 5_ i = 12
CA[i]^SR[i] : otherwise

If an interrupt is serviced (i.e., at least one MCA[i] signal is active), the JISR signal
is activated.

58 CHAPTER 3. TOMASULO HARDWARE

JISR =
31W

i=0
MCA[i]

If the interrupt is of type continue, which is indicated by the IRQcontinue signal,
the writeback must take place in spite of the interrupt. Interrupts 5 to 31 are of this
type. The writeback is controlled by the writeback signal.

IRQcontinue =

�
4W

i=0
MCA[i]

�

writeback = (JISR_ IRQcontinue)̂ retire

The writeback of the result of the instruction into the register file is performed via
register file / producer table port three with the wb (writeback) signals. The address
(wb.A) and the register file and the result data is taken from the ROB. These values are
also used to address the producer table.

wb.A = wb.ROB2.Dout.dest
wb.gpr = wb.ROB2.Dout.gpr
wb.fpr = wb.ROB2.Dout.fpr
wb.spr = wb.ROB2.Dout.spr
wb.db = wb.ROB2.Dout.db

wb.l.RF.Din = wb.ROB1.Dout.data[31:0]
wb.h.RF.Din = wb.ROB1.Dout.data[63:32]

The interface to the register file specifies two write enable signals: The first one,
wb.wl, is used for GPR and SPR register files and for the low part of the floating
point registers. The second, the wb.wh signal, is only used for the high part of the
floating point registers. A single precision floating point register is in the low part,
iff its address is even (i.e., wb.A[0] is zero). For double precision values, both write
enable signals have to be active.

wb.l.RF.w = writeback̂
((wb.db_ wb.A[0]) ^ wb.fpr)_ wb.gpr_ wb.spr)

wb.h.RF.w = writeback̂
(wb.db_ wb.A[0]) ^ wb.fpr

For the producer table, port three is also used as read port to compare the tag with
the address of the reorder buffer entry. If they are equal, the valid bit of the register is
set.

3.10. REGISTER FILE ENVIRONMENT 59

wb.l.Prod.w = wb.l.RF.ŵ (wb.l.Prod.Dout.tag=ROB.head)
wb.h.Prod.w = wb.h.RF.ŵ (wb.h.Prod.Dout.tag=ROB.head)

wb.l.Prod.Din.valid = 1
wb.l.Prod.Din.tag = 0ϑ

wb.h.Prod.Din.valid = 1
wb.h.Prod.Din.tag = 0ϑ

Furthermore, during writeback, the IEEEf special purpose register is updated with
the value of the IEEEf data item of the ROB entry. This is done by the register file
environment (section 3.10).

3.9.3 Completion

During completion, the producer parts of the reservation stations put a result on the
CDB. This result has to be written into the ROB. This is done with port nine of the
ROB1 RAM. The ROB2 RAM does not contain any values which are to be modified
during completion.

The valid flag of the CDB is used as the write enable signal of the write port.
The write address to the ROB RAM is the tag of the instruction on the CDB. The
CDB is used as data input to the RAM, since all data items of the ROB1 RAM have
corresponding items on the CDB.

3.10 Register File Environment

3.10.1 Register Values

The register file environment contains the different register files, which are the general
purpose register file (GPR), the floating point register file (FPR) and the special pur-
pose register file (SPR). All register files have three ports. The ports one and two are
read only; they are used by the issue / decode environment for the source operands.
Port three is used for writeback by the reorder buffer. This port is a write only port.
The Tomasulo scheduling algorithm prevents concurrent read/write accesses of regis-
ter values on the same address.

The GPR (figure 3.24) consists of 32�32 integer registers (R0,...,R31). It is imple-
mented as three port 32�32 standard RAM. R0 is defined to be always zero, which is
realized by testing the register address and by pulling the output down in case of R0.

The FPR (figure 3.25) consists of 32�32 single precision floating point registers
(FGR0,...,FGR31). These registers can also be accessed as 16�64 double precision
floating point registers (FPR0, FPR2,...,FPR30). The FPR is split into two parts, one
for the lower 32 bits and one for the higher 32 bits. It is implemented as two three port
16�32 standard RAMs.

60 CHAPTER 3. TOMASULO HARDWARE

The SPR consists of several registers needed for special purposes such as flags and
masks. The SPR registers are listed in table 3.15. The SPR is designed in analogy
to the SPR in [MP95], i.e., real registers are used instead of a RAM. The interface to
the decode/issue environment is identical to the interface of the GPR. Thus, the SPR
environment has three address decoders (two for read, one for write).

Of these three decoders, a maximum of two is used simultaneously, because the
DLX instruction set has no instruction with two explicit SPR registers as source. The
decoders and the output busses for the read ports are in figure 3.26. Based on the values
generated by the decoders, signals P1[31:0] to P3[31:0] for the ports one to three are
calculated. These signals are used as output enable signals for the drivers of the read
ports and as clock enable signals for the write port.

3.10.2 Special Circuits for the SPR

For the SPR register file, several registers have extended access modes. The IEEE
standard requires a status flags register for floating point instructions [Ins85, EP97]. It
contains a bit for each IEEE exception. Whenever a floating point exception occurs,
the flag bit in the IEEEf register is set. Since the IEEE standard requires the IEEE flags
to be sticky, the new value is ORed with the old value and re-written into the register
(figure 3.27). This only applies to new values from the ROB IEEEf data item, which
is only used by floating point instructions. For integer instructions, the IEEEf data
item of the ROB is zero. Values written into IEEEf with movi2s are written without
modification.

During rfe, only one SPR register has to be modified: The content of the ESR
register is copied into the SR register. This is controlled by the DOrfe signal (chapter
3.5.6).

Both JISR and rfe are realized by direct access to the single registers. Figure 3.27
gives the implementation for the SR, ESR, and IEEEf special purpose registers. The
implementation of EPC, EPC, ECA, and EDATA is identical to the implementation of
ESR. RM and FCC do not require any special circuits.

The registers ECA, SR and EDATA require special circuits. During JISR, the
following SPR actions have to be performed:

ESR = SR
ECA = MCA

SR = 0
EDATA = ROB[ROB.head].Edata

Furthermore, EPC and EPCn are updated by a calculation based on values of the
ROB. This calculation is identical to the calculation found in [Lei98]. It ensures that
the EPC/EPCn registers hold the PCs of the next two instructions. The calculation is
done in dependence of several cases (branch taken/not taken, in delay slot or not). An
implementation of this calculation is in figure A.7 (appendix A, page 102).

3.10. REGISTER FILE ENVIRONMENT 61

A1
5

Dout1
op1.A

5
A2 Dout2GPR

Din3

w3

32

1

5wb.A

wb.l.RF.w

wb.gpr

wb.l.RF.Din

A3

op1.l.RF.Dout

op2.l.RF.Dout
32

32

OR

OR

op1.A

op2.A

op2.A

op2.gpr

op1.gpr

Figure 3.24: The general purpose registers

Nr. Name Purpose

0 SR Status register (interrupt mask)
1 ESR Exception status register
2 EPC Exception program counter
3 EPCn Exception program counter 2
4 ECA Exception cause register
5 EData Exception data register
6 RM Floating point rounding mode
7 IEEEf IEEE interrupt flags
8 FCC Floating point comparison flag

Table 3.15: Special purpose registers

62 CHAPTER 3. TOMASULO HARDWARE

A1
5

Dout1
op1.A[4:1]

5
A2 Dout2FPR

op2.A[4:1]

Din3

w3

32

1

5wb.A[4:1]

wb.l.RF.w

wb.fpr

A3

low part

op2.l.RF.Dout32

32

A1
5

Dout1
op1.A[4:1]

5
A2 Dout2FPR

op2.A[4:1]

Din3

w3

32

1

5wb.A[4:1]

wb.h.RF.w

wb.fpr

wb.h.RF.Din

A3

high part

op1.h.RF.Dout

op2.h.RF.Dout

32

32

op1.l.RF.Dout

wb.l.RF.Din

op1.fpr

op2.fpr

op2.fpr

op2.fpr

Figure 3.25: The floating point registers

3.10. REGISTER FILE ENVIRONMENT 63

5op2.A 32

P2[0]

SR

P2[1]

ESR EPC

op2.spr

P2[31:0]

P2[2]
.

5op1.A 32

P1[0]

SR

P1[1]

ESR EPC

op1.spr

P1[31:0]

P1[2]
.

op1.l.RF.Dout

op2.l.RF.Dout

D
ec

(5
)

D
ec

(5
)

5wb.A

P3[31:0]

32

Din3
32

1
wb.l.RF.w

wb.spr

wb.l.RF.Din

D
ec

(5
)

Figure 3.26: The decoders of the special purpose register file

64 CHAPTER 3. TOMASULO HARDWARE

0
1

0
1

0
1

0
1

P3[1]

SR

P3[7]

P3[0]

ESR

Din3

Din3

Din3

ESR
ESR

JISR

SR
SR

0

JISR

JISR

DOrfe

32

IEEEf

writeback

IEEEf

ROB.op7.IEEEf

Figure 3.27: Three special purpose registers

3.10.3 Producer Tables

The register file environment also contains the producer tables (storage for valid bits
and tags). There is one table for each of the three register files. All producer tables
have four ports. The ports one and two are read only; they are used by the decode/issue
environment for the two source operands. Port three is used for writeback by the
reorder buffer; it is a write only port. Port four is used by decode/issue in order to set
the flags for the destination register. In contrast to the register files, all producer tables
are made of register based RAM to allow concurrent read/write access to the same
address. Furthermore, all producer tables have an input signal init, which sets all valid
bits in one cycle if active.

The GPR producer table (figure 3.28) is implemented as four port 32� (ϑ+1)
register based RAM. R0 is defined to be always zero, thus it is required to keep R0.valid
always true to prevent result forwarding from instructions writing into R0.

The FPR producer table (figure 3.29) is split into two parts, just as the FPR register
file. It is implemented as two four port 16� (ϑ+1) register based RAMs.

The SPR producer table (figure 3.30) is similar to the GPR producer table with
two exceptions. It does not contain the test for address zero and it has two additional
multiplexers in order to realize accesses to the RM and MASK registers during issue
of floating point instructions. This saves two extra read ports for operand bus three
and four. In case of a floating point instruction, the ports one and two are used for

3.10. REGISTER FILE ENVIRONMENT 65

operand bus three and four. Since floating point instructions never read any other
special purpose registers, no conflict arises.

Updating of the Producer Tables during Issue

During issue, the valid bit of the destination register has to be cleared and the tag of
the instruction has to be stored in the producer table. This is done with RAM port four.

The dest.l.w and dest.h.w signals are the write enable signals of port four of the
low and the high memory bank, respectively. The GPR and the SPR only have the low
bank. The FPR has a high bank, which is in use while accessing double precision reg-
isters or while accessing single precision registers with odd addresses (dest.A[0]=1).
The low bank is in use while accessing double precision registers or while accessing
single precision registers with even addresses (dest.A[0]=0). Thus:

dest.l.w = /issuestall̂ (db_ dest.A[0]_ dest.fpr)
dest.h.w = /issuestall̂ (db_ dest.A[0])^ dest.fpr

The valid bit written is always zero. The tag bits written are the ROB tail pointer
bits provided by the reorder buffer environment.

Dest.l.Prod.Din.valid = 0
Dest.l.Prod.Din.tag = ROB.tail
Dest.h.Prod.Din.valid = 0
Dest.h.Prod.Din.tag = ROB.tail

66 CHAPTER 3. TOMASULO HARDWARE

1
0

1
0

A1
5

Dout1
op1.A

5
A2 Dout2GPR

op2.A

Din4

w4

4+1

1

5dest.A

dest.l.w

dest.gpr

A4

Din3

w3

4+1

1

5wb.A

wb.l.Prod.w

wb.gpr

A3

wb.l.Prod.Din

Producertable

dest.l.Prod.Din

init
JISR

4+1

4+1

op1.l.Prod.Dout

op2.l.Prod.Dout

00001

00001

OR

OR

1

1

op1.gpr

op2.gpr

op2.A

op1.A

Figure 3.28: The general purpose registers producer table

3.10. REGISTER FILE ENVIRONMENT 67

A1
5

Dout1

5
A2 Dout2FPR

op2.A[4:1]

low part

op1.l.Prod.Dout

4+1

4+1

Producertable
op2.l.Prod.Dout

Din4

w4

4+1

1

5dest.A[4:1]

dest.fpr

A4

Din3

w3

4+1

1

5wb.A[4:1]

wb.l.Prod.w

wb.FPR

A3

A1
5

Dout1
op1.A[4:1]

5
A2 Dout2FPR

op2.A[4:1]

high part

op1.h.Prod.Dout

op2.h.Prod.Dout

4+1

4+1
Producertable

Din4

w4

4+1

1

5

dest.h.w

dest.fpr

A4

Din3

w3

4+1

1

5wb.A[4:1]

wb.h.Prod.w

wb.fpr

A3

JISR
init

init

dest.l.Prod.Din

JISR

dest.h.Prod.Din

dest.A[4:1]

wb.h.Prod.Din

op1.A[4:1]

dest.l.w

wb.l.Prod.Din

op1.fpr

op2.fpr

op1.fpr

op2.fpr

Figure 3.29: The floating point registers producer table

68 CHAPTER 3. TOMASULO HARDWARE

0
1

0
1

A1
5

Dout1

5
A2 Dout2SPR

4+1

4+1
Producertable

Din4

w4

4+1

1

5
A4

Din3

w3

4+1

1

5
A3

init

op1.l.Prod.Dout

op2.l.Prod.Dout

op3.l.Prod.Dout

op4.l.Prod.Dout

RM

SR

dest.A

dest.l.w

dest.spr

dest.l.Prod.Din

wb.A

wb.l.Prod.w

wb.spr

wb.l.Prod.Din

JISR

op2.A

op1.A

op3.RM

op4.MASK

op2.spr

op1.spr

Figure 3.30: The special purpose registers producer table

Chapter 4

Memory System

4.1 Overview of the Data Memory System

The data memory interface is embedded just as an ordinary floating point unit and
handles both loads and stores. There are only few exceptions from this rule. Figure
4.1 depicts the complete data memory function unit including the reservation stations.

The address operand of a memory instruction is always a GPR register and it is
transported in the low part of operand bus one. The immediate constant (provided
by the decode/issue environment), which is used as address offset, is added to the
value on this bus before it is stored in reservation station R0. If the operand is already
valid during issue, the sum is the correct memory address. If not so, the decode/issue
environment puts zero on the operand bus. In this case, the sum is the immediate
constant.

The second operand bus is only used by store instructions and provides the actual
value to be stored. The operand busses op3 and op4 are not used by the data memory
system.

The instructions and operands provided on these busses are stored in the data mem-
ory reservation stations. The data memory reservation stations are described in the
next section. During dispatch, one instruction is passed from a reservation station to
the single-adjust-one circuit (figure 4.2). This circuit is identical to the single-adjust-
one circuit presented in chapter 3 except that it only modifies operand two. Operand
one is always integer. After leaving the single adjust circuit, the instruction is passed
to the data memory interface, which contains the actual interface to the data memory
or data memory cache. After the memory access, the data memory interface passes
the result of the instruction to the single-adjust-two circuit, which is identical to the
single-adjust-two circuit in chapter 3. The single-adjust-two circuit passes the result
to the producer circuit, which propagates it on the CDB.

69

70 CHAPTER 4. MEMORY SYSTEM

CDB

RS Control

Memory

Producer

Interface

result

single
adjust 1’

single
adjust 2

control op1 op2

control op1 op2

control op1 op2

control op1 op2

control op1 op2

control op1 op2

Ain

Aout

Aout

Ain

Ain

Aout

Reservation Station 0

Reservation Station 1

CDB

CDB

CDB

Pstall FUvalid

RSvalidFUstall

op1

op2

op3

D

op4

Add(32)

co1

FU j .CDBack

RS0.doe

RS1.doe

RSnj�1.doe

RS0.data

RS1.data

RSnj�1.data

Reservation Stationnj �1

Figure 4.1: The data memory reservation stations

0 1
db

01

0
32

64

32

low high
64

32

op2.data

op2.data

op2.high

fp

Figure 4.2: Single adjust for the data memory reservation stations

4.2. THE DATA MEMORY RESERVATION STATION 71

4.2 The Data Memory Reservation Station

Each reservation station (figure 4.3) can hold one load/store instruction and its operands.
The reservation station has a register for the full bit, the tag bits and an operation code
op. The full bit indicates that the reservation station is in use. The tag data item is
the ROB tag of the instruction in the reservation station. The op data item has the
following components:

� The op.load data item is one if the instruction is a load, and it is zero otherwise.

� The op.fp data item is active iff the instruction is a floating point load or store.

� The op.db data item is active iff the instruction is a double precision operation.

� The op.op2.high data item is the least significant bit of the address of the data
source register on stores, op.dest.high is the least significant bit of the address
of the destination register on loads.

� The op.IR[28:26] data items are bits 26 to 28 of the instruction word and are used
to determine the width of the memory operand (byte, halfword, word, double).

The first operand in the data memory reservation station is the address operand.
This operand is always 32 bits wide. Thus, one reservation station operand is sufficient
to store this data. Since the immediate constant has to be added to the address register,
this operand requires special circuits (figure 4.4). It is identical to the usual reservation
station operand circuit presented in chapter 3 (figure 3.15, page 38) except for the
additional adder. This adder calculates the sum of the data on the CDB and the data in
the operand register, which is the immediate constant.

The second operand is only used for store instructions. It holds the value to be
stored. Since this can be a double precision floating point value, two reservation station
operands are required, one for the low and one for the high part. The operand circuit
used for operand two is identical to the operand circuit presented in chapter 3 (figure
3.15).

The operation of the reservation stations of the memory system is identical to the
operation of the reservation stations presented in chapter 3. However, the dispatch
protocol is modified to ensure data integrity.

4.3 Dispatch Protocol

The dispatch protocol used in this design is taken from [M¨ul97a]. There are four condi-
tions whether to dispatch a store in entryi: The first condition ensures that all operands
of the entry are valid. The second condition is a test whether the address operands of
all preceding instructions are valid. These instructions are in the reservation stations

72 CHAPTER 4. MEMORY SYSTEM

0
1

op

 t
ag

 f

ul
l

in
0

0

R
es

er
va

tio
n

St
at

io
n

O
pe

ra
nd

 o
p2

.l

in
1.

l
C

D
B

in
fi

ll
C

D
B

va
lid

ou
t

A
dd

re
ss

 O
pe

ra
nd

 o
p1

.l

in
C

D
B

va
lid

ou
t

fi
ll

R
es

er
va

tio
n

St
at

io
n

O
pe

ra
nd

 o
p2

.h

in
C

D
B

va
lid

ou
t

fi
ll

R
es

er
va

tio
n

St
at

io
n

in
2.

h

lo
w

hi
gh

lo
w

in
2.

l

fi
ll

F
R

 O
 M

P

R
 E

 V
 I

 O
 U

 S

R
 S

A
dd

re
ss

 C
he

ck

A
va

lid

A
ou

t

A
in

A
ou

t

op
1

cl
ea

r

JI
SR

op
1

op
1.

va
lid

op
2.

l.v
al

id
op

2.
h.

va
lid

A
va

lid

R
O

B
 H

ea
d

C
he

ck

R
O

B
va

lid

ta
g

ta
g

lo
ad

op
.lo

ad

R
O

B
va

lid

va
lid

op
1.

va
lid

fu
ll

da
ta

op
2.

l.v
al

id

op
2.

h.
va

lid

A
va

lid

R
O

B
va

lid

ou
t2

.h
ou

t2
.l

ou
t1

.l
ou

t0

T
 O

N

 E
 X

 T

R
 S

A
in

Figure 4.3: A single data memory reservation station

4.4. IMPLEMENTATION OF THE DISPATCH PROTOCOL 73

with indices higher thati. The third condition makes sure that the memory operands of
the preceding instructions do not overlap with the memory operand of the instruction
in the entry to be dispatched. This condition is tested by the overlap(i; j) macro. The
value of overlap(i; j) is true if the memory operands in RSi and RSj overlap.

Condition four is an extension of the dispatch protocol presented in [M¨ul97a] and
is necessary to realize precise interrupts. Stores must not be executed before all pre-
vious instructions have terminated, because any previous instruction might cause an
interrupt. This is realized by comparing the ROB.head pointer with the tag stored in
the reservation station.

(S1) RSi.op1.valid = RSi.op2.valid = 1

(S2) 8 j > i : RSj .op1.valid = 1

(S3) 8 j > i : overlap(i; j)

(S4) ROB.head = RSi.tag

The conditions for load dispatch are different, because loads do not require in-
order execution, therefore, the test for overlapping memory operands is omitted if both
instructions are a load. Condition four is omitted, too, because loads do not modify
the memory.

(L1) RSi.op1.valid = RSi.op2.valid = 1

(L2) 8 j > i : RSj .op1.valid = 1_ RSj .op.load

(L3) 8 j > i : overlap(i; j) _ RSj .op.load

4.4 Implementation of the Dispatch Protocol

The additional conditions for dispatching a reservation station are implemented in the
reservation station itself. The reservation station generates the RSi.valid signal only iff
all operands and all dispatch conditions are valid. The reservation station control of the
data memory system is therefore identical to the reservation station control presented
in chapter 3.

The condition (1) is tested by the AND-tree in the reservation station (figure 4.3).
Conditions (2) and (3) are tested by the address check circuit (figure 4.5). This circuit
takes the address operands of all previous reservation stations as input and generates a
valid signal named Avalid.

The first step in order to calculate this signal is to define the overlap(i; j) macro
(figure 4.6). In the given implementation, only two different memory operand widths
are considered, which are 64-bit and 32-bit. Halfword and byte wide operands are

74 CHAPTER 4. MEMORY SYSTEM

A
dd

0 1

1 0

valid tag data

EQ

CDB.tag

CDB.valid

valid out

readCDB

readCDB

CDB.data

readCDB

address

in fillCDB

ta
g,

 v
al

id

ad
dr

es
s

Figure 4.4: The data memory reservation station address operand

Avalid

...
...

...

...
...

...

...
...

...

ov
er

la
p(

i,i
-1

)
ov

er
la

p(
i,0

)

RSi.op.load

RSi.op.load

RSi+1.op.load

RSn�1.op.load

RSi+1.op1.valid

RSn�1.op1.valid

RSi.op.db

RSi.op.db

RSi+1.op.db

RSn�1.op.db

RSi.op3.data

RSi.op3.data

RSi+1.op3.data

RSn�1.op3.data

Figure 4.5: The data memory reservation station address comparator operand for reser-
vation station RSi

4.5. MEMORY INTERFACE 75

handled as 32-bit operands. In order to determine this operand with, the macro DB(i; j)
is used. It is true iff at least one of the operands in RSi or RSj is a double precision
value. The test for overlapping operands is done as follows: In case of single precision
values, address bits 2 to 31 are compared. If double precision values are involved,
address bits 3 to 31 are compared.

DB(i; j) = RSi.op.db_ RSj .op.db

overlap(i; j) = (RSi.op1.data[31:3] = RSj .op1.data[31:3])̂
((RSi.op1.data[2] = RSj .op1.data[2])_ /DB(i; j))

The overlap(i; j) macro compares a pair i,j of reservation stations. In order to cal-
culate the Avalid signal, the second step is to apply the overlap macro to all preceding
instructions. This step includes a test for loads, which do not require this condition.

RSi.Avalid =
n�1V

j=i+1

�
(overlap(i; j)^RSj.op1.valid)_ (RSj .load^RSi.load)

�

Condition (4) is tested as follows: The ROBvalid signal is active, iff condition (4)
holds.

RSi.ROBvalid = (ROB.head = RSi.tag)_ RSi.op.load

Further CPI optimization is possible by implementing load forwarding or write
combining on stores. In order to save hardware cost at lower performance, it is pos-
sible to perform all memory instructions in program order. The exact performance
quantification of both implementations is left for simulations.

4.5 Memory Interface

4.5.1 Control

The memory interface (figure 4.7) is a generic function unit with the usual interface
to the reservation stations and the producer as used in chapter 3. It has an additional
pipeline stage to save cycle time. The pipeline registers of this stage are placed before
the input signals of the data memory. M denotes this register. The output signals of the
data memory are almost directly connected to the registers of the producer, thus, there
are no critical paths through the data memory.

The memory is accessed by a 64-bit wide data path. In order to store single bytes,
halfwords and words, the memory interface uses eight bank write signals mw[7:0].
These bank write signals are calculated by the Mwgen circuit, which is taken from

76 CHAPTER 4. MEMORY SYSTEM

RSi:

RSi.op1.data[31:3]

RSj.op1.data[31:3]

RSj.op1.data[2]

RSi.op1.data[2]

EQ

EQ

RSj.op.db

RSi.op.db

DB(i,j)

overlap(i,j)

Figure 4.6: The overlap(i; j) macro

Align4S

6411321

Mce

RSvalid
tagop op2 FUstall

JISR

op1

data[2:0]

M:

A w Din

busy

DMEM

Pstalldmal EData

M.op1.data

ppfDout

Dpf

Align4L

M.op

/F
U

st
al

l

FUvalid data

/J
IS

R Mwgen

misa op full tag op1.data Mw[7:0] D W H op2.data

Figure 4.7: Memory interface

4.5. MEMORY INTERFACE 77

[Lei98]. The first step is to determine the exact width of the operand. For this purpose,
the bits B (byte), H (halfword), W (word), and D (doubleword) are calculated from
bits of the instruction word.

B = IR[27] ^ IR[26]
H = fp ^ IR[27] ^ IR[26]
W = IR[27] ^ IR[26] _ fp ^ IR[28]
D = fp ^ IR[28]

The bits B[7:0] are derived from the address bits op1.data[2:0] by a decoder. It
specifies the offset of the memory operand in an aligned double word. The bank write
signals mw[7:0] and the misalignment signal misa are computed as follows:

misa = (store_ load)^
(D ^ (B[0] _ B[1] _ B[2]) _ W ^ (B[0] _ B[1]) _ H ^ B[0])

mw[0] = misa^ store^ B[0]
mw[1] = misa^ store^ ((B ^ B[1] _ H ^ B[0]) _ (W ^ B[0] _ D ^ B[0]))
mw[2] = misa^ store^ ((B ^ B[2] _ H ^ B[2]) _ (W ^ B[0] _ D ^ B[0]))
mw[3] = misa^ store^ ((B ^ B[3] _ H ^ B[2]) _ (W ^ B[0] _ D ^ B[0]))
mw[4] = misa^ store^ ((B ^ B[4] _ H ^ B[4]) _ (W ^ B[4] _ D ^ B[0]))
mw[5] = misa^ store^ ((B ^ B[5] _ H ^ B[4]) _ (W ^ B[4] _ D ^ B[0]))
mw[6] = misa^ store^ ((B ^ B[6] _ H ^ B[6]) _ (W ^ B[4] _ D ^ B[0]))
mw[7] = misa^ store^ ((B ^ B[7] _ H ^ B[6]) _ (W ^ B[4] _ D ^ B[0]))

The bank write signals mw[7:0] and the D, W, and H signals are stored in the
pipeline register M. The mw[7:0] are fed into the data memory and the D, W, and H
signals are used in the alignment circuit for loads.

As mentioned above, the data memory interface is built like any other function
unit. This implies that the data memory interface has to generate and respect the flow
control signals, which are RSvalid, FUvalid, Pstall, and FUstall. The FUstall signal is
active iff the data memory interface is not able to accept further instructions. This is
the case if the data memory itself is busy (DMEM.busy=1) or if the producer stalls the
function unit (Pstall=1).

FUstall = DMEM.busy_ Pstall

The FUvalid signal indicates that the function unit provides a valid result. This is
true iff there is an instruction in the register (M.full=1) and if the function unit is not
stalled (FUstall=0).

FUvalid = M.full ^ FUstall

78 CHAPTER 4. MEMORY SYSTEM

The clock enable signal of the pipeline register of the function unit (Mce) is active
if the function unit is not stalled (FUstall=0) or if there is an interrupt (JISR=1). In
case of an interrupt, the register is cleared.

Mce =FUstall_ JISR

4.5.2 Memory Exceptions

The memory system can generate two types of exceptions: page faults and misalign-
ment exceptions. Page faults are used to implement virtual memory. The data memory
indicates page faults by raising the pff signal. The data memory system propagates this
event on the CDB by enabling the Dpf bit of the CDB. The current memory address in
M.op1.data is passed in the EData component of the CDB.

Misaligned memory accesses are indicated by the CDB.dmal signal, which is the
misa signal stored in the pipeline register.

4.5.3 Alignment Shifts

The align-for-store and align-for-load boxes take care of correct alignment before a
store and after a load, respectively. These circuits are specialized shifters. Figure 4.8
depicts the valid alignment of the memory operands and the corresponding values of
the lower address bits A[2:0].

The align-for-load (Align4L) circuit (figure 4.9) performs the alignment shift after
a load instruction. The first step is to select the bits of the memory operand from the
64-bit memory bus. This is done by three cascaded multiplexers, which are controlled
by the address bits A[2:0]. The first multiplexer selects the correct 32-bit word from
the 64-bit bus. The second multiplexer selects the correct 16-bit halfword from the
32-bit word generated by the first multiplexer. The third multiplexer selects the correct
byte from this halfword.

The DLX instruction set supports two different types of integer load instructions.
Loads of 8 or 16 bits memory operands can be performed with or without sign ex-
tension. Loads of 32 or 64 bits values are always done without sign extension. The
align-for-load circuit uses a macroSextn;m(a;s), which is a conditional sign extension
of a n-bit valuea to m bits if the condition bits is active. Ifs is not active, thea is
extended tom bits with leading zeros. The circuit is defined in appendix A.2. The
condition bit is provided as bit IR[28] in the instruction word. The Align4L circuit
returns zero in case of a store instruction in order to have defined values on the CDB.

The align for store (Align4S) circuit (figure 4.10) is much simpler. The operand
provided by the single-adjust-one circuit is copied on all valid locations on the 64-bit
memory bus. Three multiplexers select the operand with the correct width.

4.5. MEMORY INTERFACE 79

0 1 2 3 4 5 6 70 8 16 24 32 40 6448 56

A[2:0] = 000

A[2:0] = 000

D = 1

H = 1

A[2:0] = 100

A[2:0] = 000 A[2:0] = 010 A[2:0] = 100 A[2:0] = 110

A[2:0] = 000

W = 1

B = 1 A[2:0] = 001 A[2:0] = 010 A[2:0] = 011 A[2:0] = 100 A[2:0] = 101 A[2:0] = 110 A[2:0] = 111

Figure 4.8: Valid alignments

1 0
A[2]

32

1 0
A[1]

[31:16] [15:0]

16

1 0
A[0]

[15:8] [7:0]

8

1 0

IR[28]

1 0
M.W

1 0
M.D

IR[28]

[31:0][63:32]

64

0
32

M.H

64
op.load

Sext8;16

Sext16;32

Figure 4.9: Align for load

80 CHAPTER 4. MEMORY SYSTEM

1 0

1 0

1 0

[7:0][61:0] [31:0]

D

W

H

[15:0]

64

64

Figure 4.10: Align for store

Chapter 5

Cost and Cycle Time

5.1 Hardware Cost

In spite of progress in miniaturization, hardware cost, e.g., transistor count, is still a
crucial matter in CPU design. The hardware cost model used in the following sec-
tions is presented in [MP95, KP95] at length. The following sections give just a short
summary.

The model does not take wiring into account; only gates are relevant for the hard-
ware cost calculation. Since the Tomasulo algorithm requires several large bus struc-
tures, further research on this topic might be of interest. Table 5.1 lists the cost and
delay of the basic gates. The values are normalized to the cost and the delay of an
inverter.

The overall cost calculation is done by a program, since resolving recurrences is
beyond the interest of this thesis. See appendix B for detailed instructions. The detailed
cost values in table 5.2 are calculated for a DLX core with Tomasulo scheduler without

Gate Cost Delay

Inverter Cinv 1 Dinv 1
NAND Cnand 2 Dnand 1
NOR Cnor 2 Dnor 1
AND Cand 2 Dand 2
OR Cor 2 Dor 2
XOR Cxor 4 Dxor 2
XNOR Cxnor 4 Dxnor 2
Multiplexer Cmux 3 Dmux 2
Tristate Driver Cdriv 5 Ddriv 2
Flip-Flop Cf f 8 Df f 4

Table 5.1: Cost and delay of the basic gates

81

82 CHAPTER 5. COST AND CYCLE TIME

data or instruction cache, and 16 reorder buffer entries. The following sections expose
the hardware cost of main circuits in this thesis.

5.1.1 Cost Calculation of the Control Automaton

The cost of the control boolean equations in the decode/issue environment (page 21)
are estimated with a model found in [MP95]. The automaton in this thesis does not
store the state. Thus, the circuits for the next state calculation and the output signals
calculation are sufficient.

The calculation of cost and delay depends on a set of parameters. This set is given
in table 5.3. The cost of the automata is calculated in three steps:CM denotes the cost
of the calculation of the monomials. With the result of this calculation, the next state
is calculated at costCN. The state is not stored but depending on it, the output signals
are calculated at costCO.

CM = σ �Cinv+(lsum�#M) �Cand

CN = faninsum� (Cand+Cor)� (k�1) �Cor

CO = (νsum� γ) �Cor

The cost calculation program uses these formulae in order to calculate the cost of
the ID1 and ID2 automata in theopgen() function.

5.1.2 Reservation Stations and Function Units

With more than 30% of the total cost of the core, the reservation stations are the most
expensive data structure in the design, mainly because of the large number of registers
and equality testers for each of the six operands. In the data memory reservation
stations, the address adders have the biggest cost share. The adders calculate the sum of
the memory address operand and the immediate constant co1. The immediate constant
is 16 bits wide with sign extension to 32 bits. Thus, the total cost of the data memory
reservation station can benefit from a specialized adder, which assumes that the upper
16 input bits of one operand are equal.

Since [Ger98, Del98] state that many reservation stations have a low use in com-
mon benchmarks, the total cost of the reservation stations may be reduced by remov-
ing rarely used reservation stations without or with slight impact on the performance.
Four reservation station entries are therefore used for the ALU and the data memory
and only two for each floating point function unit. Table 5.4 lists cost values for the
different assignments. The last entry is the hardware cost with variable number of
reservation stations for each function unit as proposed in chapter 3.

In order to save hardware cost within the data memory environment, processing
the load/store instructions strictly in-order could save all address adders up to one and

5.1. HARDWARE COST 83

Circuit Cost # Total % Figures

two float RS, without FU 9839 2 19678 8.3 3.13 p.34
one float RS, without FU 5600 3 16800 7.1 3.13 p.34
Floating point adder 23735 1 23735 10.1
Floating point mul/div unit 47557 1 47557 20.2
Floating point converter 15926 1 15926 6.7
Floating point transfer 2209 1 2209 0.9
four integer RS, without FU 7201 1 7201 3.1 3.13 p.34
Integer ALU 3693 1 3693 1.6 A.4 p.100
Data memory environment (four RS)37846 1 37846 16.0 4.1 p.70
Instruction memory environment 70 1 70 0.0 3.5 p.20
Instruction register environment 158 1 158 0.1 3.6 p.21
PC environment 2252 1 2252 1.0 3.3 p.20
CDB control environment 196 1 196 0.1 3.22 p.51
Decode / issue environment 3742 1 3742 1.6 3.9 p.26
Reorder buffer environment 19807 1 19807 8.4 3.23 p.55
Register files 19545 1 19545 8.3 3.24 p.61
Producer tables 15574 1 15574 6.6 3.28 p.66

Total 235989 100.0

Table 5.2: Cost of the core components

Symbol Meaning ID1 ID2

σ # input signals 13 3
γ # output signals 45 1

k # states 37 2
ζ ζ = dlogke 6 1

νmax maximal frequency of a control signal 21 1
νsum accumulated frequency of all control signals196 1

#M # monomials, nontrivial 39 4
lmax length of longest monomial 13 2
lsum accumulated length of all monomials 340 8

faninmax maximal fanin ofn 6= z0 2 8
faninsum accumulated fanin 38 8

Table 5.3: Parameters for the control automata ID1 and ID2

84 CHAPTER 5. COST AND CYCLE TIME

RS / FU CPI / speedup cost without cache cost with cache

1 1.6602 0.0% 198076 100.0% 573055 100.0%
2 1.5644 6.1% 229080 115.7% 604059 105.4%
4 1.5161 9.5% 291116 147.0% 666095 116.2%
8 1.4720 12.7% 415216 209.6% 790195 137.9%

var. �1.5 10.7% 235989 119.1% 610968 106.6%

Table 5.4: Variations of the number of reservation stations. The last line lists the values
for the configuration with a variable number of reservation stations depending on the
function unit.

save all the address comparators, since it would be no longer necessary to compare the
addresses in the reservation stations.

Another approach to save hardware cost of the reservation stations is to remove
operands not worth forwarding, i.e., RM and MASK. This could save up to one third
of the total cost of the reservation stations. Section 3.7.2 (page 49) discusses the con-
sequences.

The cost values for the floating point units are taken from [Lei98]. The cost of the
floating point converter is estimated. The cost of the ALU environment is estimated
from values found in [MP95] since this environment is almost literally copied. In order
to save cycle time, the expensive variant with conditional sum adder is used, since the
ALU with carry look-ahead adder would be on the critical path.

5.1.3 Hardware Cost of the ROB and the Register Files

One disadvantage of the reorder buffer is that it requires many RAM ports for forward-
ing. Thus, the cost impact of adding a large amount of ports to a RAM is significant for
the total hardware cost. The cost and delay of an-bit on chip RAM withA addresses
andr read andw write ports is estimated as follows in analogy to [MP95]:

Cram(A;n; r;w) = Cram(A;n) � (0:4+0:6� (2w+ r)=2)
Dram(A;n; r;w) = Dram(A;n) � (0:5+0:5� (2w+ r)=2)

The ROB has many components and reorder buffer with more entries require more
tag bits, which increases the cost of the reservation stations. It is therefore advisable
to keep the number of entries small. Table 5.5 shows the cost and CPI values for four
different ROB sizes. The simulations in [Ger98] did not show that the CPI decreases at
bigger ROB sizes. A ROB size of 16 entries therefore seems to be most cost efficient
for the given design.

The GPR and FPR is implemented as RAM to save hardware cost. In order to
allow cycles from Din to Dout, the SPR and all producer tables are made of register
based RAM, which is much more expensive. However, there are only nine special
purpose registers, which keeps the cost of the SPR low.

5.2. CYCLE TIME 85

ROB entries tag bits CPI / speedup cost without cache cost with cache

16 4 1.4720 0.0% 235989 100.0% 610968 100.0%
32 5 1.5186 -3.1% 254008 107.6% 628987 102.9%
64 6 1.4365 2.4% 288177 122.1% 663156 108.5%
128 7 1.4639 0.6% 354667 150.3% 729646 119.4%

Table 5.5: Effect of ROB size on hardware cost and CPI

Pipelined RSR+ROB Tomasulo

CPU core only 108949 100% 169701 155% 235989 216%
with 16 kb cache 483928 100% 544680 112% 610968 126%

CPI/speedup 2.12 0% 1.73 22% 1.47 44%

Table 5.6: Cost of core and complete CPU and CPI rates

According to the results in table 5.2, reorder buffer, register files, and producer
tables together have about 23 percent of the total core cost.

5.1.4 Caches

The overall cost of the Tomasulo core of about 236k gate equivalents seems to be a
huge augmentation compared to the pipelined core (table 5.6). However, any modern
CPU design provides data and instruction caches to speed up access to the memory
system. These caches are rather large and expensive compared to the actual core. The
values in table 5.6 are based on a 16 KB direct mapped cache; they are taken from
[MP98]. Comparing both pipelined and Tomasulo architectures with caches shows the
cost efficiency of Tomasulo scheduling. At 26 percent higher cost, the design performs
44 percent better. In order to get realistic values, all CPI rates have been simulated with
caches.

5.2 Cycle Time

In the given hardware model, the maximum clock frequency of a CPU is determined by
the accumulated gate delay of the longest path in the design. This path is determined by
a special program. In this program, all data paths are modelled by C++ data structures.
Details on this program are contained in appendix B.

For the given designwithout floating point units , the critical path is determined
by the program as follows: Figure 5.1 shows the path. It starts in the IR1 register of
the decode/issue environment (figure 3.9, page 26). The instruction word is processed
by the control automaton ID1 (opgen). After that, the generated values are used to
calculate op1.A, the register address of the first operand (figure 3.10, page 27). With

86 CHAPTER 5. COST AND CYCLE TIME

0

1

0

1

0

1

IR1
32

pup

1

0

NOP

opgen

Agen

Producertable Reorder Buffer

datagen

src1

op1.l.data
PC0

32

JISRrfesetPC

/issuestall

jumpR op1.l.data

Figure 5.1: The longest path

this address as index, the tag bit of the register is looked up in the producer table. This
tag is used as address for the ROB RAM. The output of the ROB is used as input for
the top MIX of the datagen circuit (figure 3.11, page 30). The operand determined by
datagen is used as input for address computation on branches in the PC environment.
The path ends in the PC0 register and has an accumulated delay of 106, which is
comparable to other designs, e.g., the pipelined DLX presented in [MP95].

For this calculation, it is assumed that the memory interfaces (instruction and data
memory) do not increase the delay. In case of slow memory, it is assumed that appro-
priate caches are added.

The delay can be easily reduced down to 66 by replacing the ROB RAMs with a
register based RAM. However, using a register based RAM of this size increases the
hardware cost of the core by 34 percent. Adding the FPU introduces a much longer
data path with a length of 137 gate delays within the floating point function units
[Lei98]. The overall clock rate of the design is therefore determined by the FPU and
not by the scheduler used. However, the design of the FPUs leaves much room for
optimization.

5.3. QUALITY SURVEY AND COMPARISON 87

Longest Path:
0 DECODE.IR1

25 opgen
4 Agen/sourcereg
0 Prod.opx
9 Prod.opx.Dout
0 ROB.Ax

49 ROB1 RAM
0 opx.ROB.Dout
8 operands
6 new_pc0
5 pc0

106 TOTAL (11 circuits)

Table 5.7: Longest path of the design

5.3 Quality Survey and Comparison

5.3.1 Introduction on Quality Metrics

The quality of a given design depends on the cost and on the performance of the design
[Grü94, MP95]. These two values have different weights for certain tasks. For a given
task, the hardware cost might be more important than the performance or vice versa. In
order to quantify this weight, a quality parameterq2 [0;1] is introduced. Withq= 1,
only cost is relevant for the quality. Withq = 0, only performance counts and with
q = 0:5, both parameters have equal weight. Realistic quality weights for cost and
performance are values between 0.2 and 0.5.

In order to compare two designs given such a weight, the CPI and the costC in
gate equivalents is used for the quality function. It is assumed that both designs have
equal or similar cycle times.

Qq =
1

CPI1�q �Cq

For this definition of quality and regarding a fixed quality parameterq, a designA
is better than a designB iff QA

q > QB
q , i.e., higher values ofQq denote better designs.

5.3.2 Comparison

Two other DLX designs are used as reference: The pipelined DLX with precise inter-
rupts and floating point units presented in [MP95, MP98] and a DLX with result shift

88 CHAPTER 5. COST AND CYCLE TIME

Tomasulo
RSR+ROB

Pipelined

only cost countsonly performance counts
q

Q
ua

lit
y

Q
q

10:80:60:40:20

1

0:5

0:25

0:125

Figure 5.2: Quality for Pipelined DLX, RSR+ROB, and Tomasulo+ROB

register (RSR) and reorder buffer presented in [Lei98]. Table 5.6 contains the cost and
CPI values for all three designs. The CPI values are taken from [Ger98, Del98].

Since all designs use similar floating point units, all share the same path in the
rounding unit of 137 gate delays. The RSR+ROB DLX in [Lei98] has a critical path
with 164 gate delays. Since this path can be easily optimized, the cycle time of the
three designs can be assumed to be equal.

Figure 5.2 is a plot of the quality function of these designs in a logarithmic scale.
As expected, the pipelined design is always the best design if hardware cost is crucial.
The Tomasulo scheduler wins in spite of the high cost if performance counts. The cost
and performance of the RSR+ROB design is exactly between both other designs. All
three designs have an interval ofq, in which their qualityQq is optimal. Thepoints of
equal quality (i.e., the value ofq with QA

q = QB
q), are marked with two lines in figure

5.2, to show the ranges ofq, in which the single designs are optimal.

Chapter 6

Correctness

The correctness proof of the Tomasulo scheduling algorithm with reorder buffer it-
self is already in [Ger98]. It is based on a proof for the Tomasulo scheduler without
reorder buffer in [Mül97a]. The proof presented here uses a slightly different nota-
tion. The correctness proof has two parts: The first part shows that data consistency is
maintained. The second part proves that the algorithm terminates, i.e., the hardware is
deadlock-free.

6.1 Data Consistency

6.1.1 Definitions

Let I1 to In be a sequence ofn instructions. Data consistency intuitively means that the
results generated by any given instruction Ii in the program conform to the semantics
of an abstract DLX machine. These semantics are defined as transition rules on an
abstract configuration setC(i) of the machine. This configuration includes all DLX
registers, which are R0(i) to R31(i), SPR, FPR, and PC(i), and the rest of the program
to be executed. A shorthand for all register files is RF[](i). The start configuration
C(0) is the configuration after the reset.

This abstract DLX machine processes one instruction with each transition. Let the
source registers of instruction Ii beS1(i) to Ss(i)(i) with valuesσ1(i) to σs(i)(i) and the
destination registersD1(i) to Dd(i)(i) with valuesδ1(i) to δd(i)(i). We uses(i) source
and d(i) destination registers to handle double precision floating point instructions
without disturbing distinction of cases. For example, the instruction

FPR0:=FPR2+FPR4

has six source operands (FGR2 to FGR5 and RM and MASK) and three destination
operands (FGR0, FGR1, and IEEEf). Let opi be the operation of instruction Ii , this is a
double precision floating point addition in the example.

89

90 CHAPTER 6. CORRECTNESS

Now, Ii can be specified as

I i : (D1(i),..,Dd(i)(i)) = opi (S1(i),..,Ss(i)(i))

with values

I i : (δ1(i),..,δd(i)(i)) = opi (σ1(i),..,σs(i)(i))

As mentioned above, the abstract DLX machine processes instruction Ii in tran-
sition i, which results in configurationC(i). Registers not written by instruction Ii

are passed unmodified from configurationC(i�1). Let last(r; i) be index of the last
instruction prior Ii which modified registerr:

last(r; i) = maxf j < i j I j has destination registerrg

This allows an easy criterion for data consistency for any given (non-abstract) ma-
chine.

Criterion 1 For any given source register, the value of this register must be the result
of the last instruction writing it:

σx(i) = δy(last(Sx(i); i)) 8x2 f1; ::;s(i)g, Dy(i) = Sx(i)

There are some exceptions from this rule, e.g., the register R0, which are left out
for sake of simplicity. Furthermore, if there is no such instruction, this value is unde-
fined, therefore, it is assumed that all registers, which are used as source register, are
initialized with proper values by the program.

The rest of the section will prove that this condition holds for the machine pre-
sented in chapter 3. The denominators of the abstract DLX machine for the registers
and the values are now used for the Tomasulo DLX configuration. This is done in
analogy to the proof in [M¨ul97a] with the help of four invariants.

Invariant 1 During the issue of instruction Ii , source operandSx(i) is in the register
file, as indicated by RF[r].valid=1. In this case, the data item of the register holds the
desired value, i.e., it holds the result of the last instruction writing RF[r].

RF[r].valid=1 during issue of Ii =) RF[r].data =δy(last(r; i))

6.1. DATA CONSISTENCY 91

Invariant 2 During the issue of instruction Ii , source operandr :=Sx(i) is, as indicated
by RF[r].valid=0, the result of an previous instruction Ij , which has not yet retired. In
this case, the tag item of the register holds Ij .tag, i.e., the tag of the instruction Ij . This
instruction is the last instruction writing RF[r].

RF[r].valid=0 during issue of Ii =) RF[r].tag = Ilast(r; i).tag

Invariant 3 Let instruction Ii be an instruction in reservation station RSl . If there is
an operandx in this reservation station which is not yet valid (RSl .opx.valid=0), there
must be a previous instruction Ij , which produces the value for the operand and has
not yet completed. The tag of this instruction is the tag in RSl .opx.tag.

RSl .opx.valid=0 and Ii in RSl =) RSl .opx.tag = Ilast(Sx(i); i)
.tag

Invariant 4 Let invariant 2 or 3 apply for Ii and source operandr := Sx(i) with tag
Sx(i).tag. If the CDB is valid and if the CDB tag is equal to the tag of the operand,
the result of the last instruction writing the operand is on the CDB. If the ROB entry
pointed to by the tag of the operand is valid, the result of the last instruction writing
the operand is in this ROB entry.

Invariant 2 or 3 applies^ (CDB.tag =Sx(i).tag)
=) δy(last(r; i)) is on the CDB

Invariant 2 or 3 applies^ (ROB[Sx(i).tag].valid = 1)
=) δy(last(r; i)) is in ROB entry ROB[Sx(i).tag]

With the help of these invariants, the proof of the data consistency is done by
induction overn. For n= 0, the claim is obvious. The induction forn> 0 requires a
distinction of two cases. Let instruction Ii read source operandSx(i). This is possible
in two different phases.

� Let instruction Ii read registerr:=Sx(i) during issue. In dependence of the value
of RF[r].valid, either invariant 1 or invariant 2 applies. If RF[Sx(i)].valid is set,
the claim is an implication of invariant 1, since the operand is in the register file.

If not so, invariant 2 states that RF[r] contains the tag of the instruction Ij which
produces the result. As the operand of the instruction is already available during
issue, it must be either in the ROB or on the CDB. In both cases, invariant 4 ap-
plies. Thus, the result in the ROB or on the CDB isδ(last(r; i)). The instruction
I j had correct operands because ofj < i.

92 CHAPTER 6. CORRECTNESS

� Let instruction Ii read registerr:=Sx(i) while in reservation station RSl . This
only happens if RSl .opx.valid is not set. In this case, invariant 3 states that the
tag in RSl .opx.tag is the tag of the instruction Ij which producesδ(last(r; i)).
This tag must be equal to the tag on the CDB, thus invariant four applies. Ii

therefore reads the result of Ij . This is the correct result because ofj < i.

6.2 Termination

6.2.1 Definitions

The termination proof will show that an instruction sequence I1 to In is processed in
a finite amount of clock cycles. The following shorthands are used: fetch(i), issue(i),
disp(i), compl(i) and term(i) denote the cycles in with instruction Ii is fetched, issued,
dispatched, completed and terminated, respectively.

6.2.2 Termination

Lemma 1All instructions are issued in program order and terminate in program order,
i.e., issue(i)< issue(j) and term(i)< term(j) for any i < j.

In-order termination is a conclusion of the fact that an instruction terminates when
leaving the ROB. The ROB is a fifo queue and is filled in program order. Con-
sequently, to prove termination, it is sufficient to prove that a finiteα exists with
term(i) +α � term(j) for any i < j, i.e., to find an upper bound for the number of
cycles of an instruction. A weak upper bound forα can be determined by summing
up the maximum time which an instruction spends in each stage after all previous
instructions terminated:

α� α0+ :::+α4

This bound is proved by induction overn. The induction hypothesis is that instruc-
tion Ii obeys to this bound.

Fetch After all previous instructions terminated, instruction Ii can be fetched if
there is no stall from the instruction memory. Iflmem< ∞ is the maximum latency of
the memory,α0 = lmem.

Issue Instruction Ii can be issued iff there is no issue stall (the conditions for an
issue stall are in section 3.5.6, page 32). This is obviously true one cycle after all
previous instructions terminated and if there is no stall from the instruction memory.
Sincelmemis the maximum latency of the memory,α1 = lmem+1.

Dispatch Instruction Ii can be dispatched iff all its operands are valid and if the
function unit is able to accept data. Obviously, the operands are valid after all pre-
vious instructions terminated. However, the function unit still might be blocked by

6.2. TERMINATION 93

instructionsafter I i , i.e, instructions Ij with j > i. Let imaxbe the maximum number
of instructions the function unit can hold (including the producer pipeline stage), and
l the maximum latency of the function unit. For iterative function units,imax� l is a
weak bound for the number of cycles until the function unit is empty. This bound is
valid for pipelined function units, too. However, before an instruction can leave the
function unit, it is necessary to wait for the CDB. Since the CDB is allocated round
robin, this takesn cycles at most, withn being the number of function units. Thus,
it takesα2 = imax� l �n cycles at most until the function unit is empty. As Ii is the
oldest valid instruction in the reservation stations (all previous already terminated), Ii

is dispatched afterwards.

Completion As shown above, an instruction Ii in a function unit leaves it (com-
pletes) after at mostα3 = imax� l �n cycles.

Termination A valid (completed) instruction in the ROB terminates one cycle
after all previous instructions terminated. Thus,α4 is one cycle.

94 CHAPTER 6. CORRECTNESS

Chapter 7

Perspective

Several aspects of the Tomasulo scheduler have not been examined in this thesis. They
are left for further research.

� Modern CPUs with Tomasulo scheduler issue up to eight instructions in one
cycle. Extending the hardware to handlemultiple instruction issue is subject
of a thesis by Mark A. Hillebrand [Hil99].

� The design presented in this thesis performs a stall on each conditional branch
until the operand is available. In order to make effective use of a scheduling
algorithm,branch prediction is required to eliminate these stalls. This is also
part of the thesis of Mark A. Hillebrand.

� The Tomasulo scheduling algorithm has built-in support for function units with
variable latency. This allows for floating point units sharing expensive compo-
nents such as the rounder. This results in a slightly lower IPC but great cost
savings.

Further cost savings are possible by removing the forwarding of the rounding
mode by encoding it in the instruction word. Another cost-saving opportunity is
dropping the forwarding of the interrupt mask. The floating point rounder itself
could access the SR (status register) special purpose register directly, performing
a stall if not available.

� The present design already supports 64 bit wide floating point operands. The
extension to 64 bit wide integer operands is therefore available at very low extra
cost. Simulations should show how much improvement in IPC is possible by
wider integer operands.

� The hardware model used in this thesis does not take wiring in account. An
improved model presented in [PS98] includes the significant impact of wiring
on cost and delay.

95

96 CHAPTER 7. PERSPECTIVE

Appendix A

Auxiliary circuits

A.1 The Find First One Circuit

A.1.1 Purpose

The (unary) n-bit find first one circuit (FFO) and the (unary) n-bit find last one circuit
(FLO) calculate the following function:

f fo: f0;1gn !f0;1gn+1, (an�1; :::;a0) 7! (bn�1; :::;b0;zero), such that

bi =

�
1 : i = minf jjaj = 1^ j 2 f0; :::;n�1gg
0 : otherwise

zero=

�
1 : ai = 0 for all i 2 f0; :::;n�1g
0 : otherwise

f lo: f0;1gn !f0;1gn+1, (an�1; :::;a0) 7! (bn�1; :::;b0;zero), such that

bi =

�
1 : i = maxf jjaj = 1^ j 2 f0; :::;n�1gg
0 : otherwise

zero=

�
1 : ai = 0 for all i 2 f0; :::;n�1g
0 : otherwise

This means that the circuit finds the first (last) active signal within a set of signals.
If the signals are ascending numbered, the circuit calculates the minimum (maximum)
of the set of active signals. This value is returned unary, i.e., by an set of signals as big
as the input set. Furthermore, a signal zero is returned, which is set iff the minimum
(maximum) is undefined.

It is used by the reservation station control (section 3.6.4, page 37) and by the CDB
control (section 3.8, page 49).

97

98 APPENDIX A. AUXILIARY CIRCUITS

A.1.2 Construction

Figure A.1 and A.2 depict a recursive definition of the unary find first one circuit. The
cost and delay run at:

Cf f o(1) = Cinv

Cf f o(n) = Cf f o(dn=2e)+Cf f o(bn=2c)+Cinv+
(bn=2c) �Cand+Cand

Df f o(1) = Dinv

Df f o(n) = Df f o(dn=2e)+Dinv+Dand

zero

a0 b0

Figure A.1: 1-bit find first one

FFO

FFO

zero

zero

...
...

..
...

...
..

zero

...
...

..
...

...
..dn=2e-bit

bn=2c-bit

a0

a0

a0 b0

b0

b0

adn=2e�1 adn=2e�1 bdn=2e�1bdn=2e�1

adn=2e
bdn=2e

an�1
bn�1

abn=2c�1 bbn=2c�1

Figure A.2:n-bit find first one

A.2. CONDITIONAL SIGN EXTENSION 99

A.2 Conditional Sign Extension

The conditional sign extension circuit is used for the data memory interface and cal-
culates the following function:

sextn;m: f0;1gn+1 !f0;1gm, (an�1; :::;a0;s) 7! (bm�1; :::;b0), such that

bi =

8<
:

ai : i < n
an�1 : i � n^ (s= 1)

0 : otherwise

This means thatsextn;m(a;0) extends an unsignedn-bit integer valuea to m bits,
whereassextn;m(a;1) extends a signedn-bit integer valuea to mbits.

.

sext

.

a0

b0bnbn+1bm�1

an�1

bn�1

an�2

bn�2

Figure A.3:Sext(n;m)

A.3 The Integer Function Unit

The integer function unit (figure A.4) handles all integer operations, which are the
ALU functions and shifting instructions. Table 3.10. page 48 specifies the interface.
The function unit consists of the ALU and shifter environment presented in [MP95]
with one small modification: The overflow bitov f, which is generated by the ALU, is
masked, since it is only used for two instructions. The mask bit is calculated by the
ovfmask circuit, which implements the following function:

ovfmask= op[4]̂ op[3] ^ op[2] ^ op[0]

A.4 ROB Auxiliary Circuits

The ROB requires three auxiliary circuits, which calculate the ROB.full and ROB.empty
signals and provide the ROB pointers ROB.head and ROB.tail. The circuits are liter-
ally taken from [Lei98].

100 APPENDIX A. AUXILIARY CIRCUITS

0 1 0 1

0 1

0 1

0 1

1 0

AU(32)

ovf neg sum

op[2:0]

op[4:0]
f

[15:0]

0
15 Shifter(32)

op[0:1]

op op1 op2

comp zero

ovf

op[3]

op[4]

op[2]

op[0]

op[1]

EData

0 0

IEEEf

FUstalltag

tag Pstall

RSvalid

FUvalid result

32 5

ovfmask

op[4:0]

Figure A.4: Integer function unit environment

The ROB pointers ROB.head and ROB.tail are stored in registers (figure A.5). A
pointer register is incremented by one (modulo 16, the ROB size), if ROB.tailce or
ROB.headce is active, respectively. In case of an interrupt, the JISR signal causes that
a zero is clocked into the counter register.

The ROB flags circuit (figure A.6) provides the ROB.full and ROB.empty signals.
The ROB.full signal is active, iff the reorder buffer is full, the ROB.empty signal is
active iff the reorder buffer is empty. In both cases, the values of the pointer registers
are equal, a comparator therefore is not suited to calculate the signals. A counter
register, which holds the current number of instructions in the ROB, is used instead.
The counter is updated if ROB.tailce or ROB.headce is active:

ROB.countce = ROB.tailce_ ROB.headce

A.5 Calculation of EPC/EPCn

During retire, the instruction in the ROB is checked for interrupts. In case of an inter-
rupt, a jump to the interrupt service routine (JISR) is performed. During JISR, the EPC
and EPCn special purpose registers are filled with values calculated from values from
the ROB. The EPC and EPCn registers hold the addresses of the two PC at which the
program is to be resumed after processing the interrupt. The circuit for this calculation
(figure A.7) is identical to the circuit presented in [Lei98].

A.5. CALCULATION OF EPC/EPCN 101

ROB.head

ROB.headce

Inc(4)

ROB.head

ROB.tail

ROB.tailce

Inc(4)

ROB.tail

JISR

JISR

Figure A.5: Reorder buffer pointer

ROB.count

Inc(6)

ROB.empty

ROB.retire

Zero(6)

EQU(6)

10000
ROB.full

JISR

ROB.countce

ROB.headce ROB.tailce

Figure A.6: Reorder buffer flags

102 APPENDIX A. AUXILIARY CIRCUITS

Incf(29)

Incf(30)

[31:3]

[31:2]

00[2]

00

ROB[ROB.head].PC ROB[ROB.head].PC+8

ROB[ROB.head].PC+4

1

1ROB[ROB.head].bj

1

32ROB[ROB.head].target dtarget

Incf(30)

[1:0]

[31:2]

dtarget+4

dslot

0 1

0 1

0 1

0 1

0 1

0 1

ROB[ROB.head].PC+8 ROB[ROB.head].target

ROB[ROB.head].bj

dslot

repeat

ROB[ROB.head].PC+4 dtarget

dslot

ROB[ROB.head].PC

repeat

dtarget+4 dtarget

ROB[ROB.head].PC+4

jisrEPC jisrEPCn

Figure A.7: EPC/EPNc computation

Appendix B

The Cost and Delay Calculation
Programs

In order to calculate the hardware cost and the longest path of the design, two C++
programs are used. The following sections describe the structure of the programs and
give usage notes. The programs themselves are not printed here because of their length.
The programs should run in any C++/32-bit environment. Both programs use a library
presented in [MP95], which provides functions for the cost and delay of the basic gates
and simple circuits such as adders, RAMs, and binary trees of gates. A GNU makefile
is supplied to make compilation simple. The programs are available via WWW at the
addresshttp://www-wjp.cs.uni-sb.de/˜kroening/tomasulo/ .

B.1 The Hardware Cost Calculation Program

B.1.1 Usage

The hardware cost in gate equivalents is calculated by the cost program. The program
takes several command line arguments, which are given in table B.1. By default, the
program prints table 5.2 in LaTeX syntax. Other options allow printing of the ROB
and reservation station comparison tables.

In order to reduce the delay, the design offers two optimization tricks, which also
affect the hardware cost. The ROB is the critical component on the longest path, both
tricks therefore modify the path through the ROB. Option--trick1 enables the use
of two ROB1 RAMs, one RAM with four read and two write ports, and another with
three read and two write ports. Thus, seven read ports are available altogether. Option
--trick2 controls the type of the ROB RAM. The ROB RAM is replaced by register
based RAM if this option is set. Both options can be combined, but this does not result
in further improvement of the delay.

103

104 APPENDIX B. THE COST AND DELAY CALCULATION PROGRAMS

Parameter Purpose

--addcache Add a 16 kb direct mapped cache
--onlysum Only print cost total
--robtable Print the ROB size comparison table
--rstable Print the reservation station comparison table
--comptable Print the comparison table for the three designs
--tag=n Set the number of tag bits to n
--trick1 Enable optimization trick1
--trick2 Enable optimization trick2

Table B.1: Command line arguments of the cost calculation program

Parameter Purpose

--tag=n Set the number of tag bits to n
--trick1 Enable optimization trick1
--trick2 Enable optimization trick2

Table B.2: Command line arguments of the delay calculation program

B.1.2 Implementation

The implementation of the cost calculation program is similar to the implementation of
the cost calculation programs in [MP95]. For each environment or circuit, a function is
defined, which returns its cost in gate equivalents in dependence of certain parameters,
e.g., tag size. The main function just calculates the sum of these figures.

B.2 The Delay Calculation Program

B.2.1 Usage

The delay calculation program finds the longest path of the design. The program takes
several command line arguments, which are given in table B.2. By default, the program
prints all components on the longest path, their delay and the accumulated delay of all
components. In order to reduce the delay, the design offers two optimization tricks.
The tricks and the corresponding command line parameters have been described above.

B.2.2 Implementation

The implementation of the delay program is slightly different from the programs in
[MP95]. The program determines the delay of the longest path and also prints all
components on this path. In order to realize this, the program uses a C++ class library

B.2. THE DELAY CALCULATION PROGRAM 105

which implements an abstract data typepatht which is used as datapath. Data paths
start in a register or are provided as external signal. For example, the power up signal
pup is defined as follows:

patht pup("pup");

The string argument is the name of the source of the data path, as used for the
printout. A data path can be extended by further components just by adding them:

patht inv_pup=pup+cinv;

This defines a new data path called invpup (inverted power up). The new signal is
calculated from pup with the delay of an inverter. In order to allow correlation of gate
delays to components of the design, it is possible to add a string to a data path. This
string is the name of all gates, which have been added since the last component. The
example above is now:

patht inv_pup=pup+cinv+"inverted power up";

Most gates and circuits use more than one data path as input. The accumulated
delay of the new data path is the maximum of the accumulated delays of all input data
paths. This can be expressed as follows:

patht new_path=max(path1, path2,)+circuit_delay;

Themax function is defined for up to four arguments. However, the source code
of the data path library can be extended to any given number of arguments with ease.
As soon as a data path ends in a register, it is stored in a list of data paths. After all
data paths in the design have been added to that list, themax function of the pathlist is
called. It returns the data path with the maximum accumulated delay.

106 APPENDIX B. THE COST AND DELAY CALCULATION PROGRAMS

Appendix C

The DLX Instruction Set

This instruction set is taken from [MP95, MP98] with minimal modifications.

C.1 Instruction Formats

I-type

R-type

J-type

26

FI-type

FR-type

ImmediateRD

Function

6

SA

55

RDRS2

55

RS1

6

Opcode

6

Opcode

6 5 5 16

63

PC Offset

6 55

Opcode RS1 FD Immediate

Opcode FS1 FS2/RS2 FD

5

00 Fmt Function

Opcode

6

RS1

5 5 16

Figure C.1: Instruction formats of the DLX

107

108 APPENDIX C. THE DLX INSTRUCTION SET

C.2 Instruction Set Coding

IR[31 : 26] Mnemonic d Effect

Data Transfer, mem = M[RS1 + Sext(imm)]
100000 0x20 lb 1 RD = Sext(mem)
100001 0x21 lh 2 RD = Sext(mem)
100011 0x23 lw 4 RD = mem
100100 0x24 lbu 1 RD = 024mem
100101 0x25 lhu 2 RD = 016mem
101000 0x28 sb 1 mem = RD[7 : 0]
101001 0x29 sh 2 mem = RD[15 : 0]
101011 0x2b sw 4 mem = RD

Arithmetic, Logical Operation
001000 0x08 addi RD = RS1 + Sext(imm)
001001 0x09 addiu RD = RS1 + Sext(imm) (no overflow)
001010 0x10 subi RD = RS1 - Sext(imm)
001011 0x11 subiu RD = RS1 - Sext(imm) (no overflow)
001100 0x12 andi RD = RS1^ Sext(imm)
001101 0x13 ori RD = RS1_ Sext(imm)
001110 0x14 xori RD = RS1� Sext(imm)
001111 0x15 lhgi RD = imm016

Test Set Operation
011000 0x18 clri RD = (false ? 1 : 0)
011001 0x19 sgri RD = (RS1> Sext(imm) ? 1 : 0)
011010 0x1a seqi RD = (RS1= Sext(imm) ? 1 : 0)
011011 0x1b sgei RD = (RS1� Sext(imm) ? 1 : 0)
011100 0x1c slsi RD = (RS1< Sext(imm) ? 1 : 0)
011101 0x1d snei RD = (RS16= Sext(imm) ? 1 : 0)
011110 0x1e slei RD = (RS1� Sext(imm) ? 1 : 0)
011111 0x1f seti RD = (true ? 1 : 0)

Control Operation
000100 0x04 beqz PC = PC + 4 + (RS1= 0 ? Sext(imm): 0)
000101 0x05 bnez PC = PC + 4 + (RS16= 0 ? Sext(imm): 0)
000110 0x16 jr PC = RS1
000111 0x17 jalr R31 = PC + 4; PC = RS1

Table C.1: I-type instruction layout

C.2. INSTRUCTION SET CODING 109

IR[31 : 26] IR[5 : 0] Mnemonic Effect

Shift Operation
000000 0x00 000000 0x00 slli RD = RS1<< SA
000000 0x00 000001 0x01 slai RD = RS1<< SA (arith.)
000000 0x00 000010 0x02 srli RD = RS1>> SA
000000 0x00 000011 0x03 srai RD = RS1>> SA (arith.)
000000 0x00 000100 0x04 sll RD = RS1<< RS2[4 : 0]
000000 0x00 000101 0x05 sla RD = RS1<< RS2[4 : 0] (arith.)
000000 0x00 000110 0x06 srl RD = RS1>> RS2[4 : 0]
000000 0x00 000111 0x07 sra RD = RS1>> RS2[4 : 0] (arith.)

Data Transfer
000000 0x00 010000 0x10 movs2i RD = SA
000000 0x00 010001 0x11 movi2s SA = RS1
Arithmetic, Logical Operation
000000 0x00 100000 0x20 add RD = RS1 + RS2
000000 0x00 100001 0x21 addu RD = RS1 + RS2 (no overflow)
000000 0x00 100010 0x22 sub RD = RS1 - RS2
000000 0x00 100011 0x23 subu RD = RS1 - RS2 (no overflow)
000000 0x00 100100 0x24 and RD = RS1^ RS2
000000 0x00 100101 0x25 or RD = RS1_ RS2
000000 0x00 100110 0x26 xor RD = RS1� RS2
000000 0x00 100111 0x27 lhg RD = RS2[15:0] 016

Test Set Operation
000000 0x00 101000 0x28 clr RD = (false ? 1 : 0)
000000 0x00 101001 0x29 sgr RD = (RS1> RS2 ? 1 : 0)
000000 0x00 101010 0x2a seq RD = (RS1= RS2 ? 1 : 0)
000000 0x00 101011 0x2b sge RD = (RS1� RS2 ? 1 : 0)
000000 0x00 101100 0x2c sls RD = (RS1< RS2 ? 1 : 0)
000000 0x00 101101 0x2d sne RD = (RS16= RS2 ? 1 : 0)
000000 0x00 101110 0x2e sle RD = (RS1� RS2 ? 1 : 0)
000000 0x00 101111 0x2f set RD = (true ? 1 : 0)

Table C.2: R-type instruction layout

IR[31 : 26] Mnemonic Effect

Control Operation
000010 0x02 j PC = PC + 4 + Sext(imm)
000011 0x03 jal R31 = PC + 4; PC = PC + 4 + Sext(imm)
111110 0x3e trap trap = 1; EPC = PC; PC = SISR;

ESR = SR; ECA = masked CA; SR = 0;
EDATA = Sext(imm);
clear CA but catch new interrupt events

111111 0x3f rfe SR = ESR; PC = EPC

Table C.3: J-type instruction layout

110 APPENDIX C. THE DLX INSTRUCTION SET

IR[31 : 26] Mnemonic d Effect

Load, Store
110001 0x31 load.s 4 FD[31 : 0] = mem
110101 0x35 load.d 8 FD[63 : 0] = mem
111001 0x39 store.s 4 m = FD[31 : 0]
111101 0x3d store.d 8 m = FD[63 : 0]

Control Operation
000110 0x06 fbeqz PC = PC + 4 + (FCC= 0 ? Sext(imm): 0)
000111 0x07 fbnez PC = PC + 4 + (FCC6= 0 ? Sext(imm): 0)

Table C.4: FI-type instruction layout

IR[31 : 26] IR[5 : 0] Fmt Mnemonic Effect

Arithmetic and Compare Operations
010001 0x11 000000 0x00 fadd [.s, .d] FD = FS1 + FS2
010001 0x11 000001 0x01 fsub [.s, .d] FD = FS1 - FS2
010001 0x11 000010 0x02 fmul [.s, .d] FD = FS1 * FS2
010001 0x11 000011 0x03 fdiv [.s, .d] FD = FS1 / FS2
010001 0x11 000100 0x04 fneg [.s, .d] FD = - FS1
010001 0x11 000101 0x05 fabs [.s, .d] FD = abs(FS1)
010001 0x11 000110 0x06 fsqt [.s, .d] FD = sqrt(FS1)
010001 0x11 000111 0x07 frem [.s, .d] FD = rem(FS1, FS2)
010001 0x11 11c3c2c1c0 fc.cond [.s, .d] FCC = (FS1condFS2)

Data Transfer
010001 0x11 001000 0x08 000 fmov.s FD[31 : 0] = FS1[31 : 0]
010001 0x11 001000 0x08 001 fmov.d FD[63 : 0] = FS1[63 : 0]
010001 0x11 001001 0x09 mf2i RS = FS1[31 : 0]
010001 0x11 001010 0x0a mi2f FD[31 : 0] = RS

Conversion
010001 0x11 100000 0x20 001 cvt.s.d FD = cvt(FS1, s, d)
010001 0x11 100000 0x20 100 cvt.s.i FD = cvt(FS1, s, i)
010001 0x11 100001 0x21 000 cvt.d.s FD = cvt(FS1, d, s)
010001 0x11 100001 0x21 100 cvt.d.i FD = cvt(FS1, d, i)
010001 0x11 100100 0x24 000 cvt.i.s FD = cvt(FS1, i, s)
010001 0x11 100100 0x24 001 cvt.i.d FD = cvt(FS1, i, d)

Table C.5: FR-type instruction layout. Fmt=IR[8:6]

C.2. INSTRUCTION SET CODING 111

RM Symbol Rounding Mode

00 RZ toward zero
01 RNE to next even
10 RPI toward+∞
11 RMI toward�∞

Bit Symbol Purpose

0 OVF overflow
1 UNF underflow
2 INX inexact result
3 DBZ divide by zero
4 INV invalid operation

Table C.6: Coding of the rounding mode RM and the interrupt flags IEEEf

112 APPENDIX C. THE DLX INSTRUCTION SET

Bibliography

[CS95] Robert P. Colwell and Randy L. Steck. A 0.6um bicmos processor em-
ploying dynamic execution. International Solid State Circuits Conference
(ISSCC), 1995.

[Del98] Peter Dell. Die Auswirkung von Mechanismen zur out-of-order
Ausführung auf den Cyclecount von RISC-Architekturen. Master’s thesis,
Universität des Saarlandes, FB. Informatik, 1998.

[EP97] G. Even and W.J. Paul. On the design of IEEE compliant floating point
units. InProc. 13th IEEE Symposium on Computer Arithmetic, pages 54–
63. IEEE Computer Society, 1997.

[Ger98] Nikolaus D. Gerteis. Die Auswirkung von Mechanismen f¨ur die präzise
Interruptbehandlung auf den Cyclecount von RISC-Prozessoren. Master’s
thesis, Universit¨at des Saarlandes, Fachbereich 14 Informatik, 1998.

[Grü94] Thomas Gr¨un. Quantitative Analyse von I/O-Architekturen. PhD thesis,
Universität des Saarlandes, FB. Informatik, 1994.

[Hil99] Mark Hillebrand. Design and Evaluation of a Superscalar RISC Processor.
Master’s thesis, Universit¨at des Saarlandes, FB. Informatik, 1999. Prelimi-
nary, started in May 1998.

[HP96] J.L. Hennessy and D.A. Patterson.Computer Architecture: A Quantita-
tive Approach. Morgan Kaufmann Publishers, INC., San Mateo, CA, 2nd
edition, 1996.

[Ins85] Institute of Electrical and Electronics Engineers.ANSI/IEEE standard 754–
1985, IEEE Standard for Binary Floating-Point Arithmetic, 1985. For a
readable account see the article by W.J. Cody et al. in the IEEE MICRO
Magazine, Aug. 1984, 84–100.

[KP95] Jörg Keller and Wolfgang J. Paul.Hardware Design — Formaler Entwurf
Digitaler Schaltungen. TEUBNER, Stuttgart, Leipzig, 1995.

[Kr ö97] Daniel Kröning. http://www-wjp.cs.uni-sb.de/˜kroening/tomasulo/, 1997.

[Lei98] Holger Leister.Quantitative Analysis of Precise Interrupt Mechanism for
Processors with Out-Of-Order Execution. PhD thesis, Universit¨at des Saar-
landes, Fachbereich 14 Informatik, 1998. Preliminary Version, 03/1998.

113

114 BIBLIOGRAPHY

[Mot97] PowerPC 750 RISC Microprocessor Technical Summary, 1997.

[MP95] S.M. Müller and W.J. Paul.The Complexity of Simple Computer Architec-
tures. Lecture Notes in Computer Science 995. Springer, 1995.

[MP98] S.M. Müller and W.J. Paul.The Complexity of Simple Computer Architec-
tures II, 1998. Monograph (Draft). Email:fsmueller, wjpg@cs.uni-sb.de.

[Mül97a] S.M. Müller. Vorlesung Rechnerarchitektur II WS 96/97, Universit¨at des
Saarlandes, Fachbereich 14 Informatik, 1997.

[Mül97b] S.M. Müller. Complexity and correctness of computer architectures. In
Proc. 4th Workshop on Parallel Systems and Algorithms (PASA’96), pages
125–146. World Scientific Publishing, 1997.

[PS98] W.J. Paul and P.-M. Seidel. On the complexity of Booth recoding. InProc.
3rd Conference on Real Numbers and Computers (RNC3), 1998.

[SP88] J.E. Smith and A.R. Pleszkun. Implementing precise interrupts in pipelined
processors.IEEE Transactions on Computers, 37(5):562–573, 1988.

[Tom67] R.M. Tomasulo. An efficient algorithm for exploiting multiple arithmetic
units. InIBM Journal of Research and Development, volume 11 (1), pages
25–33. IBM, 1967.

