
Hardware Verification using ANSI-C Programs as a Reference�

Edmund Clarke Daniel Kroening

Computer Science Department Computer Science Department
Carnegie Mellon University Carnegie Mellon University
Pittsburgh, PA 15213 USA Pittsburgh, PA 15213 USA

Tel: +1-412-268-2628 Tel: +1-412-268-5409
Fax: +1-412-621-5473 Fax: +1-412-268-5576

e-mail: emc@cs.cmu.edu e-mail kroening@cs.cmu.edu

ABSTRACT

We describe an algorithm to verify a hardware design given
in Verilog using an ANSI-C program as a specification. We use
SAT based Bounded Model Checking [1] in order to reduce the
equivalence problem to a bit vector logic decision problem. As
a case study, we describe experimental results on a hardware
and a software implementation of the data encryption standard
(DES) algorithm.

I. I NTRODUCTION

A common hardware design approach employed by many
companies is to first write a quick prototype that behaves like
the planned circuit in a language like ANSI-C. This program
is then used for extensive testing and debugging, in particular
of any embedded software that will later on be shipped with
the circuit. An example is the hardware of a cell phone and
its software. After testing and debugging of the program, the
actual hardware design is written using hardware description
languages like VHDL or Verilog.

Thus, there are two implementations of the same design:
one written in ANSI-C, which is written for simulation, and
one written in register transfer level HDL, which is the actual
product. The ANSI-C implementation is usually thoroughly
tested and debugged.

Due to market constraints, companies aim to sell the chip as
soon as possible, i.e., shortly after the HDL implementation is
designed. There is usually little time for additional debugging
and testing of the HDL implementation. Thus, an automated,
or nearly automated way of establishing the consistency of the
HDL implementation is highly desirable.

This motivates the verification problem: we want to verify
the consistency of the HDL implementation, i.e., the product,

�This research was sponsored by the Semiconductor Research Corpora-
tion (SRC) under contract no. 99-TJ-684, the National Science Foundation
(NSF) under grant no. CCR-9803774, the Office of Naval Research (ONR),
the Naval Research Laboratory (NRL) under contract no. N00014-01-1-0796,
and by the Defense Advanced Research Projects Agency and the Army Re-
search Office (ARO) under contract no. DAAD19-01-1-0485. The views and
conclusions contained in this document are those of the author and should not
be interpreted as representing the official policies, either expressed or implied,
of SRC, NSF, ONR, NRL, DOD, ARO, or the U.S. government.

using the ANSI-C implementation as a reference [2]. Estab-
lishing the consistency does not require a formal specification.
However, formal methods to verify either the hardware or soft-
ware design are still desirable.

Related Work There have been several attempts in the past
to tackle the problem. In [3], a tool for verifying the combi-
natorial equivalence of RTL-C and an HDL is described. They
translate the C code into HDL and use standard equivalence
checkers to establish the equivalence. The C code has to be
very close to a hardware description (RTL level), which im-
plies that the source and target have to be implemented in a
very similar way. There are also variants of C specifically for
this purpose. The System C standard, among others, defines a
subset of C++ that can be used for synthesis [4].

The previous work focuses on a small subset of ANSI-C that
is particularly close to register transfer language. Thus, the de-
signer is often required to rewrite the C program manually in
order to comply with these constraints. We extend the method-
ology to handle the full set of ANSI-C language features. This
is a challenge in the presence of complex, dynamic data struc-
tures and pointers that may dynamically point to multiple ob-
jects. However, the approach is currently limited to functional
equivalence, i.e., the function computed by the circuit and the
program is compared. Reactive systems are not supported.

SAT based Bounded Model Checking (BMC) [1, 5] was
introduced several years ago as a complementary technique
for the more traditional BDD-based symbolic model check-
ing. The basic idea of BMC is to search for a counterexam-
ple in traces whose length is bounded by some integern. If
no bug is found then the boundn is increased until either a
bug is found, the problem becomes intractable, or some upper
bound is reached. The BMC problem can be efficiently re-
duced to a propositional satisfiability problem, and can there-
fore be solved by standard SAT methods rather than BDDs.

Outline In section II, we describe how the ANSI-C program
is transformed into a bit vector equation. In section III, we
present the algorithm that handles pointers. Section IV con-
tains the algorithm for the transformation of the Verilog design
into a bit vector equation, and section V shows the transforma-

tion into a SAT instance and we report how the technique is
applied to two implementations of DES.

II. T RANSFORMING ANSI-C

A. Preparing the Translation

This section describes how we formalize the semantics of
the ANSI-C language and reduce the Model Checking Prob-
lem to determining the validity of a bit vector equation. We
assume that the ANSI-C program is already preprocessed. The
program is then prepared for translation:

1. The instructionsbreak , continue , andreturn are
replaced by semantically equivalent goto instructions as
described in the ANSI-C standard [6]. Theswitch and
case instructions are replaced by semantically equiva-
lent code usingif andgoto instructions.

2. The for and do while instructions are replaced by
equivalentwhile instructions.

3. Side effects, i.e., post- and pre-increment operators, and
function calls, are removed by introducing new temporary
variables (section III describes how pointer dereferences
are handled). For example,

x=5+(i++);

is transformed to

tmp=i; i=i+1; x=5+tmp;

wheretmp is a new variable of the same type asi . In
case of function calls, appropriate variable renaming is
applied to preserve locality. As the ANSI-C standard al-
lows multiple evaluation orderings, all allowed orderings
have to be verified.

B. Unwinding the Program

After the preparation phase, loop constructs are unwound.
Loop constructs can be expressed usingwhile statements,
(recursive) function calls, andgoto statements. Thewhile
loops are unwound using the following transformationn times:

while(e) instr

�! if(e) f instr; while(e) instr g

The if statement is added for premature termination of the
execution of the loop body, since the actual number of itera-
tions can depend on the inputs. Any statements generated for
side effects ine are copied as well. The remainingwhile loop
is replaced by an assertion that assures that the program never
does more iterations. This assertion is called anunwinding as-
sertion.

while(e) instr �! assert(! e);

These unwinding assertions are a crucial part of our ap-
proach in order to assert that the unwinding bound is actually

great enough. We formally verify that the assertion holds. If
the assertion fails for any possible execution, then we increase
the number of iterations for the particular loop until the bound
is big enough. Note that this bound just has to be an upper
bound and does not have to match the number of iterations ex-
actly.

Function calls are expanded. Recursive function calls and
backwardgoto statements are unwound in a manner similar
to while loops.

C. Final Transformation with Variable Renaming

The program resulting from the preceding steps only con-
sists of (nested)if instructions, assignments, assertions, la-
bels, andgoto instructions with branch targets that are de-
fined after thegoto instruction (forward jumps). It is now
transformed into a bit-vector equationC that forms the set of
constraints and into a bit-vector equationP that represents the
set of properties, i.e., the assertions. During this process, the
variables are renamed.

Let the program refer to variablev at a given program loca-
tion. Let� denote the number of assignments made to variable
v prior to the location. The variablev is then renamed tov�.
Within assignments to variablev, the expression on the right
hand side is considered to be before the assignment. The vari-
able that is assigned to on left the hand side is considered to be
after the assignment. Lete denote an expression. Then�(e)
denotes the expression after renaming.

This transformation is done iteratively as follows: We start
with an empty set of constraints and properties, i.e.,C = true

andP = true. LetC andP denote the equations before one
step andC 0 andP 0 denote the equations after the step. The
algorithm terminates if the program is empty. If not so, letp

denote the remainder of the program. Letc; p0 be parts ofp,
andI be a single statement such that the concatenation ofc, I ,
andp0 is p. Furthermore, letc contain onlyif statements, and
I any other statement.

p = c I p0

Thus,I is the first statement of the remaining programp that is
not anif statement. Letn denote the number ofif statements
in c. Let e1; : : : ; en denote the expressions that are conditions
of the if statements inc.

Let g denote the conjunction of the conditions of theif
statements. In case there is noif statement, i.e.,n = 0, then
g is true. The conjunctiong is calledguardof I .

g :=

� V
n

i=1
ei : n � 1

true : otherwise

The algorithm proceeds by a case split onI.

1. Let I be agoto statement. Thegoto statement is re-
moved. The target labell of the goto instruction must
be after thegoto , i.e., withinp0. Let x denote the part
of p0 before the label andy denote the part ofp0 after the
labell:

p0 = x l : y

An if statement is added as guard to all statements in
x. The condition of theif statement is!g. The transfor-
mations does not work forgoto instructions that jump
inside a guarded block.

2. Let I be an assertion, i.e.,assert(a) . In this case, the
assertion statement is removed, the assertiona is renamed
and added as a constraint to the bit vector equationP .
Since the assertion is only executed ifg holds, then the
renamed guard�(g) must imply the renamed assertion
�(a). Remember that�(e) denotes the expressione af-
ter renaming.

P 0 := P ^ (�(g) =) �(a))

3. Let I be the skip statement. If the ”then” block of the
last if statement inc contains other instructions, the skip
statement is just removed. If not so, and the lastif state-
ment ofc has anelse part, the condition of the lastif
statement is negated and the ”else” block becomes the
”then” block. If theif statement does not have anelse
part, the lastif statement inc is replaced by a skip state-
ment.

4. Let I be an assignment. Letv be the variable on the left
hand side, lete be the expression on the right hand side.

Let the value of the variable after the assignment bev�.
The value before the assignment then isv��1. If v is a
simple variable, i.e., not of an array or struct type, i.e.,
the assignment isv = e, we add the following constraint:
The new value of the variablev� has to be equal to the
renamed right hand side if the guard holds, and equal to
the old value ofv otherwise.

C 0 := C ^ v� =

�
�(e) : �(g)
v��1 : otherwise

If v is of an array type, leta be the array index address,
i.e., the assignment isv[a] = e. The new value of the
arrayv� at indexi has to be equal to the renamed right
hand side if the guard holds and ifi is equal toa, and
equal to the old value ofv[i] otherwise.

C 0 := C ^ v� = �i :

�
�(e) : �(g) ^ i = �(a)
v��1[i] : otherwise

We add an assertion that�(a) is greater or equal zero and
that it is smaller than the number of elements ofa. As-
signment to variables with struct types are handled similar
to assignments to variables with array type.

After the computation ofC and P using the algorithm
above, we verify that

C =) P

is valid. This proves that no unwinding assertions have been
violated and that all array bounds are obeyed. Figure 1 shows
a simple example of the transformation process.

III. POINTERS

All pointer dereferences are removed recursively as follows:
Let e denote the sub-expression that is to be dereferenced.
We remove dereferencing operators bottom-up, i.e., all sub-
expressions ofe are already free of dereferencing operators or
other side effects. Letg denote the guard as described above,
o the offset. The dereferencing is done by a recursive func-
tion that is denoted by�(e; g; o). The function maps a pointer
expression to the dereferenced expression.

ANSI-C offers the star operator and the array index operator.
Both are replaced by the expression provided by�. The star
operator uses offset zero.

�e �! �(e; g; 0)

e[o] �! �(e; g; o)

The function� is defined using a case split one:

1. Let e be a symbol of pointer type. Letp be that pointer.
The equation generated so far or the guardg must contain
an equality of the form�(p) = e0 wheree0 is an arbitrary
expression. The pointerp is then dereferenced by deref-
erencinge0. Otherwise, proceed as in case 7.

�(p; g; o) := �(e0; g; o)

2. Let e be a symbol of array type. Leta be that array, i.e.,
e = a. We treat this case as syntactic sugar fore = &a[0].

3. Let e an address of symbol, i.e.,e = &s wheres is a
symbol. In this case,�(e; g; o) is justs and we assert that
the offset is zero. The variable is then renamed according
to the rules above.

�(&s; g; 0) := s

4. If e is an address of array element expression, i.e.,e =
a[i], we add the offset to the index:

�(&a[i]; g; o) := a[i+ o]

The array access is then done according to the rules above.

5. Let e be a conditional expression. The function� is ap-
plied recursively for both cases. The conditionc is added
to the guard. The condition is free of side effects and
pointer dereferences.

�(c?e0 : e00; g; o) := c ?�(e0; g ^ c; o) : �(e00; g ^ c; o)

6. Lete be a pointer arithmetic expression. A pointer arith-
metic expression is a sum of a pointer and an integer. Let
e0 denote the pointer part,i denote the integer part. The
function� is applied recursively to the pointer part of the
expression, the integer part is added to the offset.

�(e0 + i; g; o) := �(e0; g; o+ i)

x=x+y;

if(x!=1) f

x=2;

if(z) x++;

g

assert(x<=3);

!

x1=x0+y0;

if(x 1!=1) f

x2=2;

if(z 0) x 3=x2+1;

g

assert(x 3<=3);

!

C := (x 1=x0+y0)

^ x2=((x 1 6= 1) ? 2 : x 1)

^ x3=((x 1 6= 1 ^ z0) ? x 2+1 : x 2)

P := x3 �3

Fig. 1. Example: Renaming and transformation. The first box on the left contains the unwound program with assertions. Each variable is a bit vector. The first
step is to rename the variables. Then the program is transformed into a into bit vector equation as described in section C.

7. In any other case, the ANSI-C standard does not define
semantics (e might be theNULLor a pointer variable that
is uninitialized). We use a free variable in this case and
we assert that this dereferencing is never done by the pro-
gram. This is implemented by adding an assertion that
�(g) does not hold.

The algorithm for the difference of two pointersp � q is
similar. We assert thatp andq point to the same object.

Example: Consider the code fragment

int a, *p; p=&a;

if(x) p=NULL;

if(p!=NULL && *p==1);

The first two statements are transformed into:

p1 = &a ^ p2 = (x0?NULL : p1)

The star operator in theif statement is removed as follows:

�p = �(p; p 6= NULL; 0)
= �(x0?p1 : NULL; p 6= NULL; 0)
= x0?�(p1; p 6= NULL ^ x0; 0) :

�(NULL; p 6= NULL ^ x0; 0)
= x0?�(&a; p 6= NULL ^ x0; 0) : v
= x0?a : v

It is asserted thatp2 6= NULL ^ x0 does not hold.
The algorithm permits dynamic memory allocation, which

we omit due to lack of space.

IV. T RANSFORMING VERILOG

We only consider a very restricted subset of the Verilog lan-
guage. Delay or event specifiers are ignored and only reg-
ister data transfers are converted. Such a language is called
synchronous register transfer language (RTL). The process of
translating verilog into a bit vector equation closely matches
the synthesis process. As result from synthesis, we obtain a
transition relation and an initial state predicate. This transition
relation is then unwound as usually done by a bounded model
checker. In contrast to the unwinding done for ANSI-C, the
number of times the unwinding must be specified manually.

V. SAT INSTANCE GENERATION AND EXPERIMENTS

The bit vector equations obtained from the ANSI-C program
and the Verilog circuit are translated into CNF by generating
circuits for bitwise operators such as equality, shifting, and
multiplication. Due to lack of space, we have to omit the de-
tails of the simplification and translation process.

As a case study, we are using a software and hardware im-
plementation of the DES encryption standard. The software
implementation is used in most Unix systems. On a 1.5 GHZ
machine the translation of the program into a SAT instance
takes 59 seconds. The SAT checker Chaff [7] detects it to be
unsatisfiable within seconds. The hardware implementation is
written in synchronous Verilog, is cost optimized, and about
1900 lines long. It requires 16 unwinding steps.

VI. CONCLUSION AND FUTURE WORK

We have described the translation of ANSI-C programs into
a SAT instance using Bounded Model Checking. We have per-
formed experiments using a hardware and software implemen-
tation of the DES algorithm.

We plan to add support for reactive models and to optimize
the generation of the SAT instance using specialized bit vector
decision procedures and abstraction techniques.

REFERENCES

[1] A. Biere, A. Cimatti, E. Clarke, and Y. Yhu. Symbolic model checking
without BDDs. InTools and Algorithms for Construction and Analysis of
Systems, pages 193–207, 1999.

[2] C. Pixley. Guest Editor’s Introduction: Formal Verification of Commer-
cial Integrated Circuits.IEEE Design & Test of Computers, 18(4):4–5,
2001.

[3] L. Séméria, A. Seawright, R. Mehra, D. Ng, A. Ekanayake, and B. Pan-
grle. RTL C-based methodology for designing and verifying a multi-
threaded processor. InProc. of the 39th Design Automation Conference.
ACM Press, 2002.

[4] http://www.systemc.org.

[5] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu. Symbolic model
checking using SAT procedures instead of BDDs. InDesign Automation
Conference (DAC’99), 1999.

[6] International Organization for Standardization.ISO/IEC 9899:1999: Pro-
gramming languages — C. International Organization for Standardiza-
tion, Geneva, Switzerland, 1999.

[7] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:
Engineering an efficient SAT solver. InProceedings of the 38th Design
Automation Conference (DAC’01), June 2001.

