
Termination Analysis with
Compositional Transition Invariants?

Daniel Kroening1, Natasha Sharygina2,4,
Aliaksei Tsitovich2, and Christoph M. Wintersteiger3

1 Oxford University, Computing Laboratory, UK
2 Formal Verification and Security Group, University of Lugano, Switzerland

3 Computer Systems Institute, ETH Zurich, Switzerland
4 School of Computer Science, Carnegie Mellon University, USA

Abstract. Modern termination provers rely on a safety checker to con-
struct disjunctively well-founded transition invariants. This safety check
is known to be the bottleneck of the procedure. We present an alter-
native algorithm that uses a light-weight check based on transitivity of
ranking relations to prove program termination. We provide an exper-
imental evaluation over a set of 87 Windows drivers, and demonstrate
that our algorithm is often able to conclude termination by examining
only a small fraction of the program. As a consequence, our algorithm is
able to outperform known approaches by multiple orders of magnitude.

1 Introduction

Automated termination analysis of systems code has advanced to a level that
permits industrial application of termination provers. One possible way to obtain
a formal argument for termination of a program is to rank all states of the pro-
gram with natural numbers such that for any pair of consecutive states si, si+1

the rank is decreasing, i.e., rank(si+1) < rank(si). In other words, a program is
terminating if there exists a ranking function for every program execution.

Substantial progress towards the applicability of procedures that compute
ranking arguments to industrial code was achieved by an algorithm called Binary
Reachability Analysis (BRA), proposed by Cook, Podelski, and Rybalchenko [1].
This approach combines detection of ranking functions for program paths with a
procedure for checking safety properties, e.g., a Model Checker. The key idea of
the algorithm is to encode an intermediate termination argument into a program
annotated with an assertion, which is then passed to the safety checker. Any
counterexample for the assertion produced by the safety checker contains a path
that violates the intermediate termination argument. The counterexample path
is then used to compute a better termination argument with the help of methods
that discover ranking functions for program paths.
? Supported by the Swiss National Science Foundation under grant no. 200020-122077,

by EPSRC grant no. EP/G026254/1, by the EU FP7 STREP MOGENTES, and by
the Tasso Foundation.

A broad range of experiments with different implementations have shown
that the bottleneck of this approach is the safety check [1, 2]: Cook et al. [1]
report more than 30 hours of runtime for some of their benchmarks. The time
for computing the ranking function for a given program path is insignificant in
comparison. Part of the reason for the difficulty of the safety checks is their dual
role: they ensure that a disjunctively composed termination argument is correct
and they need to provide sufficiently deep counterexamples for the generation of
further ranking arguments.

We propose a new algorithm for termination analysis that addresses these
challenges as follows: 1) We use a light-weight criterion for termination based on
compositionality of transition invariants. 2) Instead of using full counterexample
paths, the algorithm applies the path ranking procedure directly to increasingly
deep unwindings of the program until a suitable ranking argument is found. We
prove soundness and completeness (for finite-state programs) of our approach
and support it by an extensive evaluation on a large set of Windows device
drivers. Our algorithm performs up to 3 orders of magnitude faster than BRA,
as it avoids the bottleneck of safety checking in the iterative construction of a
termination argument.

2 Background

Preliminaries We define notation for programs and record some basic proper-
ties we require later on. Programs are modeled as transition systems.

Definition 1 (Transition System). A transition system (program) P is a
three tuple 〈S, I,R〉, where

– S is a (possibly infinite) set of states,
– I ⊆ S is the set of initial states,
– R ⊆ S × S is the transition relation.

A computation of a transition system is a maximal sequence of states s0, s1,
. . . such that s0 ∈ I and (si, si+1) ∈ R for all i ≥ 0. A program is terminating iff
all computations of the program eventually reach a final state. The non-reflexive
transitive closure of R is denoted by R+, and the reflexive transitive closure of
R is denoted by R∗. The set of reachable states is R∗(I).

Podelski and Rybalchenko [3] use Transition Invariants to prove termination
of programs:

Definition 2 (Transition Invariant [3]). A transition invariant T for pro-
gram P = 〈S, I,R〉 is a superset of the transitive closure of R restricted to the
reachable state space, i.e., R+ ∩ (R∗(I)×R∗(I)) ⊆ T .

A well-founded relation is a relation that does not contain infinite descending
chains. Podelski and Rybalchenko define a weaker notion as follows:

Definition 3 (Disjunctive Well-foundedness [3]). A relation T is disjunc-
tively well-founded (d.wf.) if it is a finite union T = T1∪ . . .∪Tn of well-founded
(wf.) relations.

2

A program is terminating if it does not have infinite computations, and Podel-
ski and Rybalchenko show that disjunctive well-foundedness is enough to prove
termination of a program:

Theorem 1 (Termination [3]). A program P is terminating iff there exists a
d.wf. transition invariant for P .

The literature presents a broad range of methods to obtain transition in-
variants. Usually, this is accomplished via synthesis of ranking functions, which
define well-founded ranking relations [2, 4–6]. We refer to such methods as rank-
ing procedures.

Binary Reachability Analysis [1]. Theorem 1 gives rise to an algorithm for prov-
ing termination that constructs a d.wf. transition invariant in an incremental
fashion. Initially, an empty termination argument is used, i.e., T0 = ∅. Then, a
Model Checker is used to search the reachable state space for a counterexam-
ple to termination argument Ti. If there is none, termination is proven. Other-
wise, let π be the counterexample path. The counterexample may be genuine,
i.e., demonstrate a prefix of a non-terminating computation. Otherwise, a well-
founded relation T that includes π is constructed (via a ranking procedure).
Finally, the current termination argument is updated, i.e., Ti+1 = Ti ∪ T and
the process is repeated.

This principle has been put to the test in various tools, most notably in
Terminator [1], ARMC [7], and in an experimental version of SatAbs [2].

3 Compositional Termination Analysis

The literature contains a broad range of reports of experiments with multiple
implementations that indicate that the bottleneck of Binary Reachability Analy-
sis is that the safety checks are often difficult to decide by means of the currently
available software Model Checkers [1, 2]. This problem unfortunately applies to
both cases of finding a counterexample to an intermediate termination argument
and to proving that no such counterexample exists.

As an example, consider a program that contains a trivial loop. The d.wf. tran-
sition invariant for the loop can be constructed in a negligible amount of time,
but the computation of a path to the beginning of the loop may already exceed
the computational resources available.

In this section, we describe a new algorithm for proving program termination
that achieves the same result while avoiding excessively expensive safety checks.

We first define the usual relational composition operator ◦ for two relations
A,B : S × S as

A ◦B := {(s, s′) ∃s′′.(s, s′′) ∈ A ∧ (s′′, s′) ∈ B} .

Note that a relation R is transitive if it is closed under relational composition,
i.e., when R ◦ R ⊆ R. To simplify presentation, we also define R1 := R and
Rn := Rn−1 ◦R for any relation R : S × S.

3

While d.wf. transition invariants are not in general well-founded, there is a
trivial subclass for which this is the case:

Definition 4 (Compositional Transition Invariant). A d.wf. transition in-
variant T is called compositional if it is also transitive, or equivalently, closed
under composition with itself, i.e., when T ◦ T ⊆ T .5

A compositional transition invariant is of course well-founded, since it is an
inductive transition invariant for itself [3]. Using this observation and Theorem 1,
we conclude:

Corollary 1. A program P terminates if there exists a compositional transition
invariant for P .

In Binary Reachability Analysis, the Model Checker needs to compute a
counterexample to an intermediate termination argument, which is often diffi-
cult. The counterexample begins with a stem, i.e., a path to the entry point of
the loop. For many programs, the existence of a d.wf. transition invariant does
not actually depend on the entry state of the loop. For example, termination
of a trivial loop that increments a variable i to a given upper limit u does not
actually depend on the initial value of i, nor does it depend on u. The assurance
of progress towards u is enough to conclude termination.

The other purpose of the Model Checker in BRA is to check that a candidate
transition invariant indeed includes R+ restricted to the reachable states. To
this end, we note that the (non-reflexive) transitive closure of R is essentially an
unwinding of program loops:

R+ = R ∪ (R ◦R) ∪ (R ◦R ◦R) ∪ . . . =
∞⋃

i=1

Ri .

Instead of searching for a d.wf. transition invariant that is a superset of
R+, we can therefore decompose the problem into a series of smaller ones. We
consider a series of loop-free programs in which R is unwound k times, i.e., the
program that contains the transitions in R1 ∪ . . . ∪Rk.

Observation 2. Let P = 〈S, I,R〉 and k ≥ 1. If there is a d.wf. Tk with⋃k
j=1R

j ⊆ Tk and Tk is also transitive, then Tk is a compositional transition
invariant for P .

Proof. We show that Tk is a transition invariant for P , i.e., R+ ∩ (R∗(I) ×
R∗(I)) ⊆ Tk. Let (x, x′) ∈ R+ ∩ (R∗(I)× R∗(I)). There must exist a path over
R-edges from x to x′. Let l be the length of the path, i.e., (x, x′) ∈ Rl. Note that
R ⊆ Tk, and thus, Rl ⊆ T l

k. As Tk is transitive, T l
k ⊆ Tk. ut

This suggests a trivial algorithm that attempts to construct d.wf. relations Ti

for incrementally deep unwindings of P until it finally finds a transitive Tk, which
5 We use the term compositional instead of transitive for transition invariants in order

to comply with the terminology in the existing literature [3].

4

proves termination of P . However, this trivial algorithm need not terminate, even
for simple inputs. This is due to the fact that Ti does not necessarily have to be
different from Ti−1, in which case the algorithm will never find a compositional
transition invariant.

We provide an alternative that does not suffer from this limitation and takes
advantage of the fact that most terminating loops encountered in practice have
transition invariants with few disjuncts. To present this algorithm, we require the
following lemma, which enables us to exclude computations from the program
that we have already proven terminating in a previous iteration:

Lemma 1. Let P = 〈S, I,R〉 and k ≥ 1. Let T1, . . . , Tk be a sequence of d.wf. re-
lations such that each is a superset of the respective

⋃i
j=1R

j restricted to reach-
able transitions that are not contained in any previous Tj, i.e.,

i⋃
j=1

Rj \
i−1⋃
j=1

Tj ∩ (R∗(I)×R∗(I)) ⊆ Ti .

If Q :=
⋃k

i=1 Ti is transitive, then Q is a compositional transition invariant for
the program P .

Proof. We have
⋃k

i=1R
i ⊆

⋃k
i=1 Ti = Q and in particular R ⊆ Q. Therefore

R+ ⊆ Q+ and since Q is transitive it follows that R+ ⊆ Q. It is d.wf. as it is a
finite union of d.wf. relations. ut

As an optimization, we may safely omit some of the Ti while searching for a
transitive Tk:

Lemma 2 (Optimization). Let T0, . . . , Tk be the sequence of d.wf. relations
for application of Lemma 1. The claim of the lemma holds even if some of the
T1, . . . , Tk−1 are not provided (empty).

Proof. We show that Q is a transition invariant for P . Let (x, x′) ∈ R+∩(R∗(I)×
R∗(I)). As in the proof of Obs. 2, (x, x′) ∈ Rl for some l. The claim holds
trivially for l ≤ k as

⋃k
i=1R

i ⊆ Q. For l > k, note that (x, x′) ∈ (Rjk ◦ Rl−jk)
and 0 ≤ l − jk < k for some j ≥ 1. Note that Rjk ⊆ Qj and Rl−jk ⊆ Q. Thus,
(x, x′) ∈ (Qj ◦Q) = Qj+1. As Q is transitive, Qj+1 ⊆ Q, and thus (x, x′) ∈ Q.

The proof of Lemma 1 still applies. As an example, our implemenation only
uses those Ti where i is a power of two.

The procedure that we draw from Lemma 2 is Algorithm 1, and we call
it Compositional Termination Analysis (CTA). This algorithm makes use of an
external ranking procedure called rank, which generates a d.wf. ranking relation
for a given set of transitions, or alternatively a set C ∈ S of states such that
R∗(C) contains infinite computations. We say that rank is sound if it always
returns either a d.wf. superset of its input or a non-empty set of states C, and
we call it complete if it terminates on every input.

5

input : P = 〈S, I, R〉
output : ‘Terminating’ / ‘Non-Terminating’
begin1

T := ∅;2

X := S;3

i := 1;4

while true do5

〈Ti, C〉 := rank ((
Si

j=1 Rj \ T) ∩ (X ×X));6

if C ∩R∗(I) 6= ∅ then7

return ‘Non-Terminating’;8

else if C = ∅ and T ∪ Ti is transitive then9

return ‘Terminating’;10

else11

X := X \ C;12

T := T ∪ Ti;13

i := i + j, where j > 0;14

end15

end16

end17

Algorithm 1: Compositional Termination Analysis

Algorithm 1 maintains a set X ⊆ S that is an over-approximation of the
set of reachable states, i.e., R∗(I) ⊆ X. It starts with X = S and at i = 1.
It iterates over i and generates d.wf. ranking relations Ti for the transitions in⋃i

j=1R
j \ T . As long as such relations are found, they are added to T . Once it

finds a transitive T , the algorithm stops, as P terminates according to Lemma 2.
When ranking fails for some i, the algorithm checks whether there is a reachable
state in C, in which case R∗(C) contains a counterexample to termination and
the algorithm consequently reports P as non-terminating. Otherwise, it removes
C from X, which represents a refinement of the current over-approximation of
the set of reachable states.

Theorem 3. Assuming the sub-procedure rank is sound, Algorithm 1 is sound.

Proof. When the algorithm terminates with ‘terminating’ (line 10), the sequence
of relations Ti constructed so far is suitable for application of Lemma 2, which
proves termination. It is easy to see that the set R∗(I) in Lemma 2 can be over-
approximated to X. If the algorithm returns ‘non-terminating’ at line 8, it has
found a set of reachable states from which infinite computations exist, i.e., there
is a concrete counterexample to termination. ut

Lines 12–14 ensure progress between iterations by excluding unreachable
states (C) from the approximation X and adding the most recently found Ti

in T . However, for non-terminating input programs, the algorithm may not ter-
minate for two reasons: a) rank is not required to terminate, and b) there may
be an infinite sequence of iterations. This is not the case for finite S if the input

6

program is non-terminating, since sound and complete ranking procedures exist
(e.g., [5, 2]) and progress towards the goal can thus be ensured:

Corollary 2. If the sub-procedure rank is sound and complete for finite-state
programs, then Algorithm 1 is sound and complete for non-terminating finite-
state programs.

Proof. We assume a non-terminating input program P = 〈S, I,R〉. As S is finite
there must exist a looping counterexample with a finite stem. In each iteration,
either T increases or X decreases, as C ∩ X = ∅. Thus, the algorithm will
eventually consider an unwinding long enough to contain the stem, at which
point rank returns a C with C ∩ R∗(I) 6= ∅ (since it is sound and complete).
In both cases, progress is ensured because rank always returns a d.wf. ranking
relation or a non-empty set C. In the worst case, the number of iterations is
equal to the length of the shortest counterexample to termination. ut

Note that the algorithm is not complete for terminating programs even if
they are finite-state. This is due to the fact that T is not guranteed to ever
become transitive, even if it contains R+.

Example. We demonstrate the advantage of our approach over BRA on the
following simple program, where ∗ represents non-deterministic choice.

integer i ;

while i <255 do begin
i f ∗ then i := i +1;
else i := i +2;

end

The state space in this example is S = N0, and i is the only variable. A suitable
wf. transition invariant is {(i, i′) ∈ S2 i < i′ ∧ i′ ≤ 256}, which is easily
generated within a negligible amount of time. BRA subsequently needs to verify
the absence of further counterexamples, which requires 14 refinement iterations
when the SatAbs engine is used. Compositional Termination Analysis returns
immediately after synthesizing the ranking function, because the corresponding
relation is transitive. A different ranking procedure may return a d.wf. transition
invariant with one disjunct for each path through the loop body. In this case, our
algorithm stops in the second iteration, because there are no more transitions
that are not included in either of the two disjuncts.

Remark. The check in line 9 of the algorithm corresponds to checking whether
T ◦ T ⊆ T for some relation T : S × S. This corresponds to checking validity of

∀x, y ∈ S. (x, y) ∈ T → (x, y) ∈ T ◦ T ,

which, in the case of symbolically-represented relations, can be established using
one call to a suitable decision procedure.

7

4 Implementation

We have implemented Compositional Termination Analysis for ANSI-C pro-
grams. Our implementation follows Algorithm 1. It instruments the program
with termination assertions as described by Cook et al. [1] and subsequently
applies the termination analysis once to each loop in the program. There are
two additional features that need discussion, namely our abstracting loop slicer,
and the blockwise ranking procedure.

4.1 Slicing and Loop Abstraction

To reduce the resource requirements of the Model Checker, our implementa-
tion analyzes each loop separately. It generates an inter-procedural slice [8] of
the program, slicing backwards from the termination assertion. In addition, we
rewrite the program into a single-loop program, abstracting from the behavior
of all other loops.

Following the hypothesis that loop termination rarely depends on complex
variables that are possibly calculated by other loops, our slicing algorithm re-
places all assignments that depend on five or more variables with non-deterministic
values. Also all loops other than the analyzed one are ‘havocked’: they are re-
placed by program fragments that assign non-deterministic values to all variables
that might change during the execution of the loop (similar to the loop summa-
rization in [9]).

Note that this is a purely practical issue: The benchmarks we use require
far too much time to run without this abstraction. We have noticed however,
that the abstraction is almost always precise enough, i.e., we loose only very few
termination proofs. Of course, we use the exactly same slices for all methods
that we compare in our evaluation.

4.2 Blockwise Ranking

The sub-procedure rank in Algorithm 1 may be implemented in various ways.
For example, it is possible to enumerate all paths through

⋃i
j=0R

j and to obtain
a d.wf. ranking relation for every path separately. To avoid this enumeration,
we employ the symbolic execution engine of CBMC [10] to find paths through
the program that are not yet included in the candidate transition invariant. For
this purpose, we create a temporary program that first initializes all variables
with non-deterministic values, saves the state, and then executes Ri, which is
loop-free. Finally, we check for inclusion of the loop pre- and post-states in the
current candidate transition invariant (starting with the empty set).

If a counterexample is found, we extract a path from it and try to compute a
wf. ranking relation for it. If this succeeds, this relation is added disjunctively to
the current (d.wf.) candidate transition invariant. This procedure is equivalent to
the application of Binary Reachability Analysis to a loop-free program fragment.

The explicit check for compositionality of the candidate transition invariant
can often be avoided. If we find that T is composed of a single wf. ranking

8

1 void main ()
2 {
3 int x ;
4 int debug = 0 ;
5
6 while (x<255) {
7 i f (x%2!=0) x−−;
8 else x+=2;
9 i f (debug !=0) x=0;

10 }
11 }

Fig. 1. A loop with four paths through its body

relation, we trivially know that the transition relation is also well-founded, since
it is a subset of a wf. transition invariant.

The synthesis of ranking relations for paths is out of the scope of this paper,
but we would like to point the interested reader to some recent results in this
area [2, 4, 5].

4.3 Illustration

To illustrate Compositional Termination Analysis and our implementation, we
demonstrate the most important steps on a simple program. The source code for
this demonstration is given in Figure 1 and it consists of an ANSI-C program
that contains a single loop with four paths through its body. Figure 2 shows the
control flow graph of this program and defines the program locations l1 to l9.

Our algorithm starts at i = 1 and R1 is equivalent to a single unwinding of the
loop, i.e., a single copy of the loop body. The initial value of X is S, which allows
any entry state of the loop, including states that have the variable debug set to
values other than 0. The initial termination argument T is ∅. The procedure
rank analyzes R1 and, since T is empty, any path between the locations l2
and l8 violates the current termination argument. Consider the path passing
through locations l2, l3, l4, l6, l7, l8. There is no wf. ranking relation for this path
because the segment between locations l7 and l8 sets x to 0. This means that
x is always set to the same value, which also happens to satisfy the loop entry
condition. Furthermore, the variable debug never changes its value. Thus, the
procedure rank returns a non-empty path precondition C ≡ (debug 6= 0)∧ (x <
255)∧(x%2 6= 0). However, C does not contain any reachable loop entry state in
the original program because debug is set to 0 between l1 and l2. Consequently,
the test at line 7 of Algorithm 1 fails and X is updated to X \ C at line 12 of
Algorithm 1.

The algorithm continues with a refined X, while T is still empty. There
exist two more paths through the block R1: l2, l3, l4, l6, l8 and l2, l3, l5, l6, l8. The
procedure rank finds a ranking function for each of them, namely +x for the
first path and −x for the second, and constructs the d.wf. ranking relation T1 ≡

9

l1 l2 l3

l4

l5

l6

l7

l8

l9

x := ∗
debug := 0

x < 255

x
≥

2
5
5

x%2 6= 0

x%2 = 0

x := x− 1

x := x + 2

debug 6= 0 x = 0

debug = 0

Fig. 2. Control-flow graph of the program in Fig. 1

x < x′∨−x < −x′, which is disjuncively composed of two ranking relations over
the pre- and post-state of the loop (x and x′, respectively).

The constructed d.wf. ranking relation T1 is added to the termination argu-
ment T and i is increased. Since the d.wf. ranking relation found in the previous
iteration was disjunctive, the algorithm proceeds to the next iteration, where
rank examines R2, i.e., it now explores two loop unwindings. However, it cannot
find any new path that is both in R2 and not included in T . Therefore, the algo-
rithm concludes that the program in Fig. 1 terminates according to Lemma 2.

5 Experimental Results

We have evaluated our implementation of Compositional Termination Analysis
on a set of 87 Windows device drivers taken from the Windows Device Driver
Kit.6 Every driver is analyzed in two different configurations, which results in a
total of 174 benchmarks. We use Goto-CC7 to extract control flow graphs from
the original sources, which are then passed to our Compositional Termination
Analysis engine.

We compare our implementation to an implementation of Binary Reachabil-
ity Analysis using SatAbs as the safety checker. In all our experiments, we use
a simple and incomplete coefficient enumeration approach to synthesize poly-
nomial ranking functions using a SAT solver. This and our implementation of
Binary Reachability Analysis have been used in a recent comparison of ranking
engines [2]. For our evaluation we run Binary Reachability Analysis on every
driver using a timeout of 2 hours and a memory limit of 2 GB on an Intel Xeon
3 GHz machine. All those loops that this engine analyzes successfully within the
time limit serve as the baseline for our comparison. Note that some loops may
not require calls to a ranking engine, either because they are unreachable or ter-
mination is trivial and shown by preprocessing. We have excluded those loops,
i.e., our evaluation is only on loops that require a ranking engine at least once.
Our baseline consists of 99 terminating and 45 non-terminating benchmarks.

Whenever the ranking engine is not able to find a valid d.wf. transition
invariant for a block, it returns the weakest precondition of a corresponding

6 Version 6, available online at http://www.microsoft.com/whdc/devtools/wdk/
7 http://www.cprover.org/goto-cc/

10

path. This precondition describes a set of states from which termination of the
program is not guaranteed. Our implementation can be configured to react to
this situation in three different ways: a) check reachability of the precondition,
b) check reachability of the loop, or c) report the loop as non-terminating. We
present results for all three variants.

First, we discuss the results obtained from variant a), which checks path
preconditions using a Model Checker (SatAbs in our implementation) and thus
features the same level of precision as Binary Reachability Analysis. Every data
point in Figure 3 represents one loop. On the horizontal axis we indicate the
total time taken to analyze this loop using Binary Reachability Analysis. The
vertical axis indicates the time taken by Compositional Termination Analysis.
As apparent in Figure 3, Compositional Termination Analysis is up to three
orders of magnitude faster. The average speedup factor is 52. However, there are
a few non-terminating benchmarks on which it is slower. This is due to the fact
that on non-terminating loops many (or all) path preconditions are eventually
enumerated. The resulting loop-free programs are sometimes too difficult for the
model checker. A possible solution for this problem are techniques that compute
a more general precondition of non-termination. A recent technique described by
Cook et al. [11], which constructs preconditions of termination, could be applied
for this purpose.

Figure 4 provides the results obtained when checking for general loop reacha-
bility, which is essentially a crude over-approximation of the precondition of the
non-terminating paths through the loop. The results are very similar to those of
the previous variant. This is due to the fact that most loops are indeed reachable
and so are most path preconditions. There is no difference in precision compared
to variant a) on these benchmarks, i.e., no termination proofs are lost compared
to an actual precondition check.

Finally, we discuss the results obtained with variant c), which reports non-
termination immediately, i.e., without checking reachability of the loop or a
precondition. Naturally, this version of our algorithm is the fastest (Fig. 5). The
imprecision introduced by not checking loop reachability or path preconditions
does not have any effect on these benchmarks.

Figure 6 shows that the overall capacity of Compositional Termination Anal-
ysis is much higher than that of Binary Reachability Analysis: At an equal level
of precision, Compositional Termination Analysis is able to analyze more than
three times the number of benchmarks that Binary Reachability Analysis is able
to analyze.

All our experimental data, the implementation, and additional material is
available for further research at http://www.cprover.org/termination/.

6 Related work

Termination analysis has its roots in the work of Turing [12, 13]. Since then,
substantial progress has been made in various areas of computer science: logic

11

1

10

100

1000

10000

1 10 100 1000 10000

C
o
m

p
o
si

ti
o
n
a
l

T
er

m
in

a
ti

o
n

A
n
a
ly

si
s

Binary Reachability Analysis

terminating

+

++

+

++

+

++

+

+ +

+
+

+

+
++ +++

+

+++++++
++

+
+

+

+
+

+

++

+

+

+++++

+ +
+

++ + +

++

+

+

+
++

+++

+

++

+

+

+
+ + +

+
++ ++

+++++++
+

+
non-terminating

c cc

ccccc

c

ccc cc
c

ccccc cc c
c c

c

cc

cc

c c
cc

c
c
c cccc cc

c

Fig. 3. Experimental results using path precondition checks.

1

10

100

1000

10000

1 10 100 1000 10000

C
o
m

p
o
si

ti
o
n
a
l

T
er

m
in

a
ti

o
n

A
n
a
ly

si
s

Binary Reachability Analysis

terminating

+

++

+
++

+

++

+
+ +

+
+

+

+
++

+++

+

+++++++

++

+
+

+

+++

++

+

++++
+

+ +
+

++ + +

++

+

+

+
++

+++

+

++

+

+

+
+ + +

+
++ ++

+++++++
+

+
non-terminating

c cc

c
c

ccc

c

ccc cc

c
ccccc cc c

c c

c

cc

cc

c c
cc

c
c
c cccc cc

c

Fig. 4. Experimental results when using loop reachability checks.

12

1

10

100

1000

10000

1 10 100 1000 10000

C
o
m

p
o
si

ti
o
n
a
l

T
er

m
in

a
ti

o
n

A
n
a
ly

si
s

Binary Reachability Analysis

terminating

+

++

+
++

+

++

+
+ +

+
+

+

+
++

+++

+

+++++++
++

++

+

+++

++

+
+

+++++

+ +
+

++ + +

++

+

+

+
++

+++

+

++

+

+

+
+ + +

+
++ ++

+
++++++

+

+
non-terminating

c cc

c

c
ccc

c
ccc cc

c
ccccc cc c c cc

cc
c

c c cc
c

cc cccc cc

c

Fig. 5. Experimental results without loop reachability or precondition checks.

 0

 200

 400

 600

 800

 1000

B
R
A

C
TA

 a)

C
TA

 b)

C
TA

 c)

#
 L

o
o
p
s

terminating
non-terminating

Fig. 6. Total number of loops analyzed within 2 hours per driver.

13

programming (e.g., [14]), term rewriting-based analysis (e.g., [15]), and func-
tional programming (e.g., [16]).

We make use of a sub-procedure for ranking individual paths [4, 17, 6]; this
problem is orthogonal to our contribution, which is focused on the iterative
construction of a termination argument for a full program. We elaborate on the
differences of our new algorithm and BRA as described in [3, 18, 1, 11].

The basis for reasoning about transition invariants, including the result that
d.wf. transition invariants can be used to show termination, has been presented
in [3]. The BRA algorithm was presented in [1]. We also make use of the results
of [3], but develop them in a different direction: we show how to prove termination
using the compositionality of transition invariants. Our algorithm passes smaller,
loop-free fragments of the program to the safety checker, which enables it to
outperform Binary Reachability Analysis.

In [11], the authors under-approximate the weakest precondition of paths to
find a condition for termination. This result can be exploited in the context of
our algorithm as well, as it allows for a generalization of path preconditions.

Berdine et al. present an algorithm for proving termination that is based on
abstract interpretation [19]. Using an invariance analysis they construct a vari-
ance analysis, and they use the fact that the transitive closure of a well-founded
relation is also well-founded to show that the fixed-point obtained by their anal-
ysis is correct. Their result may be used to improve the overall performance of
our algorithm, as it can be modified to generate d.wf. transition invariants via
abstraction.

Biere, Artho, and Schuppan propose an encoding of liveness properties into
an assertion [20]. This approach allows proving termination of programs with-
out a ranking sub-procedure. It has been reported to prove termination of pro-
grams that require non-linear ranking functions. Prior experimental results on
our benchmarks indicate this encoding results in difficult safety checks [2].

7 Conclusion

The safety check is known as the bottleneck of Binary Reachability Analysis
(BRA). We present a new algorithm for proving program termination that avoids
this expensive safety check and is therefore able to outperform BRA. The latter
relies on a safety checker to detect correctness of a disjunctively well-founded
termination argument. We propose to check for compositionality of a candidate
termination argument, which is much less expensive. To perform this test, our
algorithm passes only loop-free segments of the program to a symbolic execution
engine and, consequently, achieves much higher performance than other termi-
nation provers. In case the termination argument has to be refined, BRA uses
a full counterexample path computed by a safety checker. In contrast, we pass
an incrementally deeper unwinding of the loop to the rank finding procedure.
Experimental results indicate an average speedup factor of 52 in comparison to
BRA.

14

References

1. Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code. In:
PLDI, ACM (2006) 415–426

2. Cook, B., Kroening, D., Ruemmer, P., Wintersteiger, C.: Ranking function syn-
thesis for bit-vector relations. In: TACAS, Springer (2010) 236–250

3. Podelski, A., Rybalchenko, A.: Transition invariants. In: LICS, IEEE Computer
Society (2004) 32–41

4. Colón, M., Sipma, H.: Synthesis of linear ranking functions. In: TACAS, Springer
(2001) 67–81

5. Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear
ranking functions. In: VMCAI, Springer (2004) 465–486

6. Bradley, A.R., Manna, Z., Sipma, H.B.: Linear ranking with reachability. In: CAV,
Springer (2005) 491–504

7. Podelski, A., Rybalchenko, A.: ARMC: The logical choice for software model
checking with abstraction refinement. In: PADL, Springer (2007) 245–259

8. Horwitz, S., Reps, T.W., Binkley, D.: Interprocedural slicing using dependence
graphs. In: PLDI, ACM (1988) 35–46

9. Kroening, D., Sharygina, N., Tonetta, S., Tsitovich, A., Wintersteiger, C.M.: Loop
summarization using abstract transformers. In: ATVA, Springer (2008)

10. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
TACAS. LNCS, Springer (2004) 168–176

11. Cook, B., Gulwani, S., Lev-Ami, T., Rybalchenko, A., Sagiv, M.: Proving condi-
tional termination. In: CAV. Volume 5123 of LNCS., Springer (2008) 328–340

12. Turing, A.M.: On computable numbers, with an application to the Entschei-
dungsproblem. Proc. London Math. Soc. 2 (1936) 230–265

13. Turing, A.: Checking a large routine. In: Report of a Conference on High Speed
Automatic Calculating Machines, Univ. Math. Lab., Cambridge (1949) 67–69

14. Codish, M., Taboch, C.: A semantic basis for termination analysis of logic programs
and its realization using symbolic norm constraints. In: Alg. and Log. Program-
ming, Springer (1997) 31–45

15. Thiemann, R., Giesl, J.: The size-change principle and dependency pairs for termi-
nation of term rewriting. Appl. Alg. in Eng., Comm. & Comp. 16 (2005) 229–270

16. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program
termination. In: POPL, ACM (2001) 81–92

17. Colón, M., Sipma, H.: Practical methods for proving program termination. In:
CAV, Springer (2002) 442–454

18. Cook, B., Podelski, A., Rybalchenko, A.: Abstraction refinement for termination.
In: SAS. Volume 3672 of LNCS., Springer (2005) 87–101

19. Berdine, J., Chawdhary, A., Cook, B., Distefano, D., O’Hearn, P.: Variance anal-
yses from invariance analyses. SIGPLAN Not. 42 (2007) 211–224

20. Biere, A., Artho, C., Schuppan, V.: Liveness checking as safety checking. Electr.
Notes Theor. Comput. Sci. 66 (2002)

15

