
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
C
A
V
*
Ar

tifact *

A
E
C

Abstract Interpretation with Unfoldings⋆

Marcelo Sousa1, César Rodŕıguez2,3, Vijay D’Silva4 and Daniel Kroening1,3

1 University of Oxford, United Kingdom
2 Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS, France

3 Diffblue Ltd., United Kingdom
4 Google Inc., San Francisco

Abstract. We present and evaluate a technique for computing path-
sensitive interference conditions during abstract interpretation of concur-
rent programs. In lieu of fixed point computation, we use prime event
structures to compactly represent causal dependence and interference
between sequences of transformers. Our main contribution is an unfolding
algorithm that uses a new notion of independence to avoid redundant
transformer application, thread-local fixed points to reduce the size of the
unfolding, and a novel cutoff criterion based on subsumption to guarantee
termination of the analysis. Our experiments show that the abstract un-
folding produces an order of magnitude fewer false alarms than a mature
abstract interpreter, while being several orders of magnitude faster than
solver-based tools that have the same precision.

1 Introduction

This paper is concerned with the problem of extending an abstract interpreter
for sequential programs to analyze concurrent programs. A näıve solution to this
problem is a global fixed point analysis involving all threads in the program.
An alternative that seeks to exploit the scalability of local analyses is to analyze
each thread in isolation and exchange invariants on global variables between
threads [19,18,3]. Much research on abstract interpretation of concurrent pro-
grams, including this paper, aims to discover analyses that combine the scalability
of the local fixed point computation with the precision of a global fixed point.

The abstract unfolding data structure and algorithm presented in this paper
combines an abstract domain with the type algorithm used to analyze Petri nets.
An unfolding is a tree-like structure that uses partial orders to compactly represent
concurrent executions and uses conflict relations to represent interference between
executions. There are several obstacles to combining unfoldings with abstract
domains. First, unfolding construction requires interference information that is
absent from abstract domains. Second, an unfolding compactly represents the
traces of a system, while abstract domains approximate states and transitions.
Finally, unfolding algorithms perform explicit-state analysis of deterministic
systems while abstract domains are inherently symbolic and non-deterministic
owing to abstraction.

⋆ Supported by ERC project 280053 (CPROVER) and a Google Fellowship.



���
���
���
���

Thread 1:

while (i++ < 99)

if (random)

break;

g += i;

Thread 2:

while (j++ < 149)

if (random)

break;

g += j;

assert(g <= 250);
a()

g+=j

g+=i

g+=j

a()

g+=i

g+=j

a()

a()

g+=j

⋮

j=1

i=0

j=0

⋮

i=1

j=0

j=1

i=2
⋮

j=0
⋮

a()

g+=j

g+=i

a()

g+=i

(c)(b)(a)

g+=j

g+=i

Fig. 1. (a) Example program (b) Its POR exploration tree (c) Our unfolding

The main idea of this paper is to construct an unfolding of an analyzer, rather
than a program. An event is the application of a transformer in an analysis
context, and concurrent executions are replaced by a partial order on transformer
applications. We introduce independence for transformers and use this notion to
construct an unfolding of a domain given a program and independence relation.
The unfolding of a domain is typically large and we use thread-local fixed point
computation to reduce its size without losing interference information.

Most pairs of transformers are not related by standard notions of indepen-
dence. A counterintuitive observation in this paper is that by increasing the
path-sensitivity of the analysis, we decrease interference, which reduces the num-
ber of interleavings to explore and improves scalability. From a static analysis
perspective, our analyser uses the unfolding to represent a history abstraction (or
trace partition) which is constructed using independence. From a dynamic analy-
sis perspective, our approach is a form of partial-order reduction (POR) [23] that
uses an abstract domain to collapse branches of the computation tree originating
from thread-local control decisions.

Contribution We make the following contributions towards reusing an abstract
interpreter for sequential code for the analysis of a concurrent program.

1. A new notion of transformer independence for unfolding with domains (Sec. 4).
2. The unfolding of a domain, which provides a sound way to combine trans-

former application and partial-order reduction (Sec. 5.1).
3. A method to construct the unfolding using thread-local analysis and pruning

techniques (Sec. 6.1, Sec. 6).
4. An implementation and empirical evaluation demonstrating the trade-offs

compared to an abstract interpreter and solver-based tools (Sec. 7).

The proofs of the formal results presented in this paper can be found in the
extended version [24].

2 Motivating Example and Overview

Consider the program given in Fig. 1 (a), which we wish to prove safe using an
interval analysis. Thread 1 (resp. 2) increments i (resp. j) in a loop that can



non-deterministically stop at any iteration. All variables are initialized to 0 and
the program is safe, as the assert in thread 2 cannot be violated.

When we use a POR approach to prove safety of this program, the exploration
algorithm exploits the fact that only the interference between statements that
modify the variable g can lead to distinct final states. This interference is typically
known as independence [22,10]. The practical relevance of independence is that
one can use it to define a safe fragment, given in Fig. 1 (b), of the computation
tree of the program which can be efficiently explored [23,1]. At every iteration of
each loop, the conditionals open one more branch in the tree. Thus, each branch
contains a different write to the global variable, which is dependent with the
writes of the other thread as the order of their application reaches different states.
As a result, the exploration tree becomes intractable very fast. It is of course
possible to bound the depth of the exploration at the expense of completeness of
the analysis.

The thread-modular static analysis that is implemented in AstreeA [19]
or Frama-c [26] incorrectly triggers an alarm for this program. These tools
statically analyze each thread in isolation assuming that g equals 0. Both discover
that thread 1 (resp. 2) can write [0,100] (resp. [0,150]) to g when it reads 0
from it. Since each thread can modify the variable read by the other, they repeat
the analysis starting from the join of the new interval with the initial interval.
In this iteration, they discover that thread 2 can write [0,250] to g when it
reads [0,150] from it. The analysis now incorrectly determines that it needs to
re-analyze thread 2, because thread 1 also wrote [0, 250] in the previous iteration
and that is a larger interval than that read by thread 2. This is the reasoning
behind the false alarm. The core problem here is that these methods are path-
insensitive across thread context switches and that is insufficient to prove this
assertion. The analysis is accounting for a thread context switch that can never
happen (the one that flows [0,250] to thread 2 before thread 2 increments g).
More recent approaches [14,20] can achieve a higher degree of flow-sensitivity
but they either require manual annotations to guide the trace partitioning or are
restricted to program locations outside of a loop body.

Our key contribution is an unfolding that is flow- and path-sensitive across in-
terfering statements of the threads, and path-insensitive inside the non-interfering
blocks of statements. Figure 1 (c) shows the unfolding structure that our method
explores for this program. The boxes in this structure are called events and
they represent the action of firing a transformer after a history of firings. The
arrows depict causality constraints between events, i.e., the happens-before rela-
tion. Dotted lines depict the immediate conflict relation, stating that two events
cannot be simultaneously present in the same concurrent execution, known as
configuration. This structure contains three maximal configurations (executions),
which correspond to the three meaningful ways in which the statements reading
or writing to variable g can interleave.

Conceptually, we can construct this unfolding using the following idea: start
by picking an arbitrary interleaving. Initially we pick the empty one which reaches
the initial state of the program. Now we run a sequential abstract interpreter



on one thread, say thread 1, from that state and stop on every location that
reads or writes a global variable. In this case, the analyzer would stop at the
statement g += i with the invariant that ⟨g ↦ [0, 0], i↦ [0, 100]⟩. This invariant
corresponds to the first event of the unfolding (top-left corner). The unfolding
contains now a new execution, so we iterate again the same procedure by picking
the execution consisting of the event we just discovered. We run the analyser on
thread 2 from the invariant reached by that execution and stop on any global
action. That gives rise to the event g+=j, and in the next step using the execution
composed of the two events we have seen, we discover its causal successor a()

(representing the assert statement). Note however that before visiting that event,
we could have added event g+=j corresponding to the invariant of running an
analyser starting from the initial state on thread 2. Furthermore, since both
invariants are related to the same shared variable, these two events must not be
present in the same execution. We enforce that with the conflict relation.

Our method mitigates the aforementioned branching explosion of the POR
tree because it never unfolds the conflicting branches of one thread (loop iterations
in our example). In comparison to thread-modular analysis, it remains precise
about the context switches because it uses a history-preserving data structure.

Another novelty of our approach is the observation that certain events
are equivalent in the sense that the state associated with one is subsumed by
the second. In our example, one of these events, known as a cutoff event, is la-
belled by g+=i and denoted with a striped pattern. Specifically, the configuration
{g+=i,g+=j} reaches the same state as {g+=j,g+=i}. Thus, no causal successor
of a cutoff event needs to be explored as any action that we can discover from
the cutoff event can be found somewhere else in the structure.

Outline. The following diagram displays the various concepts and transformations
presented in the paper:

UCM ,◇1
PCM ,◇1

UDM ,◇2
UDM ,◇3

PDM ,◇3

M CM DM
QDM ,◇3

Sec. 6
◇

Sec. 4

◇1

weak

◇2

inh

◇3

weak

Sec. 5.1
γ

m0

Fig. 2. Overview diagram

Let M be the program under analysis, whose concrete semantics CM is
abstracted by a domain DM . The relations ◇ and ◇i are independence relations
with different levels of granularity over the transformers of M , CM , or DM .
We denote by UD′,◇′ the unfolding of D′ (either CM or DM ) under independence



relation ◇′ (either ◇1 or ◇2). This transformation is defined in Sec. 5.1. Whenever
we unfold a domain using a weak independence relation (◇2 on CM and ◇3

on DM ), we can use cutoffs to prune the unfolding, represented by the dashed
line between unfoldings. The resulting unfolding, defined in Sec. 6.1, is denoted
by the letter P. The main contribution of our work is the compact unfolding,
QDM ,◇3

, an example of which was given in Fig. 1 (c).

3 Preliminaries

There is no new material in this section, but we recommend the reader to review
the definition of an analysis instance, which is not standard.

Concurrent programs. We model the semantics of a concurrent, non-deterministic
program by a labelled transition system M ∶= ⟨Σ,→,A, s0⟩, where Σ is the set of
states, A is the set of program statements, → ⊆ Σ ×A×Σ is the transition relation,
and s0 is the initial state. The identifier of the thread containing a statement a
is given by a function p∶A → N. If s

aÐ→ s′ is a transition, the statement a is
enabled at s, and a can fire at s to produce s′. We let enabl(s) denote the set
of statements enabled at s. As statements may be non-deterministic, firing a
may produce more than one such s′. A sequence σ ∶= a1 . . . an ∈ A∗ is a run
when there are states s1, . . . , sn satisfying s0

a1Ð→ s1 . . .
anÐ→ sn. For such σ we

define state(σ) ∶= sn. We let runs(M) denote the set of all runs of M , and
reach(M) ∶= {state(σ) ∈ Σ∶σ ∈ runs(M)} the set of all reachable states of M .

Analysis Instances. A lattice ⟨D,⊑D,⊔D,⊓D⟩ is a poset with a binary, least upper
bound operator ⊔D called join and a binary, greatest lower bound operator ⊓D
called meet. A transformer f ∶D → D is a monotone function on D. A domain
⟨D,⊑, F ⟩ consists of a lattice and a set of transformers. We adopt standard
assumptions in the literature that D has a least element �, called bottom, and
that transformers are bottom-strict, i.e. f(�) = �. To simplify presentation, we
equip domains with sufficient structure to lift notions from transition systems to
domains, and assume that domains represent control and data states.

Definition 1. An analysis instance D ∶= ⟨D,⊑, F, d0⟩, consists of a domain
⟨D,⊑, F ⟩ and an initial element d0 ∈D.

A transformer f is enabled at an element d when f(d) ≠ �, and the result
of firing f at d is f(d). The element generated by or reached by a sequence of
transformers σ ∶= f1, . . . , fm is the application state(σ) ∶= (fm ○ . . . ○ f1)(d0) of
transformers in σ to d0. Let reach(D) be the set of reachable elements of D.
The sequence σ is a run if state(σ) ≠ � and runs(D) is the set of all runs of D.

The collecting semantics of a transition system M is the analysis instance CM ∶=
⟨P(Σ),⊆, F,{s0}⟩, where F contains a transformer fa(S) ∶= {s′ ∈ Σ∶ s ∈ S ∧ s aÐ→ s′}
for every statement a of the program. The pointwise-lifting of a relation R ⊆ A×A
on statements to transformers in D is RD = {⟨fa, fa′⟩ ∣ ⟨a, a′⟩ ∈ R}. Let m0∶A→ F
be map from statements to transformers: m0(a) ∶= fa. An analysis instance



3

1 4 7

85

6

9

10

w

r

2

r r′

r′

w

r′

r

w

w

Fig. 3. A PES with 10 events, labelled by elements in {w, r, r′}.

D̄ = ⟨D̄, ⊑̄, F̄ , d̄0⟩ is an abstraction of ⟨D,⊑, F, d0⟩ if there exists a concretization
function γ ∶ D̄ → D, which is monotone and satisfies that d0 ⊑ γ(d̄0), and that
f ○ γ ⊑ γ ○ f̄ , where the order between functions is pointwise.

Labelled Prime Event Structures. Event structures are tree-like representations
of system behaviour that use partial orders to represent concurrent interaction.
Fig. 3 depicts an event structure. The nodes are events and solid arrows, represent
causal dependencies: events 4 and 7 must fire before 8 can fire. The dotted line
represents conflicts: 4 and 7 are not in conflict and may occur in any order, but
4 and 9 are in conflict and cannot occur in the same execution.

A labelled prime event structure [21] (PES) is a tuple E ∶= ⟨E,<,#, h⟩ with
a set of events E, a causality relation < ⊆ E ×E, which is a strict partial order,
a conflict relation # ⊆ E ×E that is symmetric and irreflexive, and a labelling
function h∶E →X. The components of E satisfy (1) the axiom of finite causes,
that for all e ∈ E, {e′ ∈ E∶ e′ < e} is finite, and (2) the axiom of hereditary conflict,
that for all e, e′, e′′ ∈ E, if e # e′ and e′ < e′′, then e # e′′.

The history of an event ⌈e⌉ ∶= {e′ ∈ E∶ e′ < e} is the least set of events that
must fire before e can fire. A configuration of E is a finite set C ⊆ E that is (i)
(causally closed) ⌈e⌉ ⊆ C for all e ∈ C, and (ii) (conflict free) ¬(e # e′) for all
e, e′ ∈ C. We let conf (E) denote the set of all configurations of E . For any e ∈ E,
the local configuration of e is defined as [e] ∶= ⌈e⌉ ∪ {e}. In Fig. 3, the set {1,2}
is a configuration, and in fact it is a local configuration, i.e., [2] = {1,2}. The
set {1,2,3} is a ⊆-maximal configuration. The local configuration of event 8 is
{4,7,8}.

Given a configuration C, we define the interleavings of C as the set

inter(C) ∶= {h(e1), . . . , h(en)∶ ∀ei, ej ∈ C, ei < ej Ô⇒ i < j} .

An interleaving corresponds to the sequence labelling any topological sorting
(sequentialization) of the events in the configuration. We say that E is finite iff E
is finite. In Fig. 3, the interleavings of configuration {1,2,3} are wrr′ and wr′r.

Event structures are naturally (partially) ordered by a prefix relation ⊴. Given
two PESs E ∶= ⟨E,<,#, h⟩ and E ′ ∶= ⟨E′,<′,#′, h′⟩, we say that E is a prefix of E ′,
written E ⊴ E ′, when E ⊆ E′, < and # are the projections of <′ and #′ to E,
and E ⊇ {e′ ∈ E′∶ e′ < e ∧ e ∈ E}. Moreover, the set of prefixes of a given PES E
equipped with ⊴ is a complete lattice.



4 Independence for Transformers

Partial-order reduction tools use a notion called independence to avoid exploring
concurrent interleavings that lead to the same state. Our analyzer uses indepen-
dence between transformers to compactly represent transformer applications that
lead to the same result. The contribution of this section is a notion of indepen-
dence for transformers (represented by the lowest horizontal arrows in Fig. 2)
and a demonstration that abstraction may both create and violate independence
relationships.

We recall a standard notion of independence for statements [22,10]. Two
statements a, a′ of a program M commute at a state s iff

– if a ∈ enabl(s) and s
aÐ→ s′, then a′ ∈ enabl(s) iff a′ ∈ enabl(s′); and

– if a, a′ ∈ enabl(s), then there is a state s′ such that s
a.a′ÐÐ→ s′ and s

a′.aÐÐ→ s′.

Independence between statements is an underapproximation of commutativity.
A relation ◇ ⊆ A×A is an independence for M if it is symmetric, irreflexive, and
satisfies that every (a, a′) ∈ ◇ commute at every reachable state of M . In general,
M has multiple independence relations; ∅ is always one of them.

Suppose that independence for transformers is defined by replacing statements
and transitions with transformers and transformer application, respectively. Ex. 1
illustrates that an independence relation on statements cannot be lifted to obtain
transformers that are independent under such a notion.

Example 1. Consider the collecting semantics CM of a program M with two
variables, x and y, two statements a ∶= assume(x==0) and a′ ∶= assume(y==0),
and initial element d0 ∶= {⟨x↦ 0, y ↦ 1⟩, ⟨x↦ 1, y ↦ 0⟩}. Since a and a′ read
different variables, R ∶= {⟨a, a′⟩, ⟨a′, a⟩} is an independence relation on M . Now
observe that {⟨fa, fa′⟩, ⟨fa′ , fa⟩} is not an independence relation on CM , as fa
and fa′ disable each other. Note, however, that fa(fa′(d0)) and fa′(fa(d0)) are
both �.

Weak independence, defined below, allows transformers to be considered
independent even if they disable each other.

Definition 2. Let D ∶= ⟨D,⊑, F, d0⟩ be an analysis instance. A relation ◇ ⊆ F ×F
is a weak independence on transformers if it is symmetric, irreflexive, and satisfies
that f ◇ f ′ implies f(f ′(d)) = f ′(f(d)) for every d ∈ reach(D). Moreover, ◇ is
an independence if it is a weak independence and satisfies that if f(d) ≠ �, then
(f ○ f ′)(d) ≠ � iff f ′(d) ≠ �, for all d ∈ reach(D).

Recall that RD is the lifting of a relation on statements to transformers.
Observe that the relation R in Ex. 1, when lifted to transformers is a weak
independence on CM . The proposition below shows that independence relations
on statements generate weak independence on transformers over CM .

Proposition 1 (Lifted independence). If ◇ is an independence relation
on M , the lifted relation ◇CM is a weak independence on the collecting se-
mantics CM .



Figure 2 graphically depicts the process of lifting an independence relation.
Relation ◇ (on the left of the figure) is an independence relation on M . Rela-
tion ◇1 ∶= ◇CM is the lifting of ◇ to CM , and by Prop. 1 it is a weak independence
relation on CM .

We now show that independence and abstraction are distinct notions in that
transformers that are independent in a concrete domain may not be independent
in the abstract, and those that are not independent in the concrete may become
independent in the abstract.

Consider an analysis instance D̄ ∶= ⟨D̄, ⊑̄, F̄ , d̄0⟩ that is an abstraction of
D ∶= ⟨D,⊑, F, d0⟩ and a weak independence ◇ ⊆ F × F . The inherited relation
◇̄ ⊆ F̄ × F̄ contains ⟨f̄ , f̄ ′⟩ iff ⟨f, f ′⟩ is in ◇.

Example 2 (Abstraction breaks independence). Consider a system M with the
initial state ⟨x ↦ 0, y ↦ 0⟩, and two threads t1 ∶ x = 2, t2 ∶ y = 7. Let I be the
domain for interval analysis with elements ⟨ix, iy⟩ being intervals for values of
x and y. The initial state is d̄0 = ⟨x ↦ [0,0], y ↦ [0,0]⟩. Abstract transformers
for t1 and t2 are shown below. These transformers are deliberately imprecise to
highlight that sound transformers are not the most precise ones.

f1(⟨ix, iy⟩) = ⟨[2,4], iy⟩ f2(ix, iy) = ⟨ix, (if 3 ∈ ix then [7,9] else [6,8])⟩

The relation ◇ ∶= {(t1, t2), (t2, t1)} is an independence on M , and when lifted,
◇CM is a weak independence on CM (in fact, ◇CM is an independence). However,
the relation ◇I is not a weak independence because f1 and f2 do not commute
at d0, due to the imprecision introduced by abstraction. Consider the statements
assume(x != 9) and assume(x < 10) applied to ⟨x↦ [0, 10]⟩ to see that even
best transformers may not commute.

On the other hand, even when certain transitions are not independent, their
transformers may become independent in an abstract domain.

Example 3 (Abstraction creates independence). Consider two threads t1 ∶ x = 2

and t2 ∶ x = 3, with abstract transformers f1(ix) = [2,3] and f2(ix) = [2,3].
The transitions t1 and t2 do not commute, but owing to imprecision, R =
{(f1, f2), (f2, f1)} is a weak independence on I.

5 Unfolding of an Abstract Domain with Independence

This section shows that unfoldings, which have primarily been used to analyze
Petri nets, can be applied to abstract interpretation. This section defines the
vertical arrows of Fig. 2.

An abstract unfolding is an event structure in which an event is recursively
defined as the application of a transformer after a minimal set of interfering events;
and a configuration represent equivalent sequences of transformer applications
(events). Analogous to an invariant map in abstract interpreters and an abstract
reachability tree in software model checkers, our abstract unfolding allows for
constructing an over-approximation of the set of fireable transitions in a program.



5.1 The Unfolding of a Domain

Our construction generates a PES E ∶= ⟨E,<,#, h⟩. Recall that a configuration is
a set of events that is closed with respect to < and that is conflict-free. Events
in E have the form e = ⟨f,C⟩, representing that the transformer f is applied after
the transformers in configuration C are applied. The order in which transformers
must be applied is given by <, while # encodes transformer applications that
cannot belong to the same configuration.

The unfolding UD,& of an analysis instance D ∶= ⟨D,⊑, F, d0⟩ with respect
to a relation & ⊆ F × F is defined inductively below. Recall that a configura-
tion C generates a set of interleavings inter(C), which define the state of the
configuration,

state(C) ∶= ⊓
σ∈inter(C)

state(σ)

If & is a weak independence relation, all interleavings lead to the same state.

Definition 3 (Unfolding). The unfolding UD,& of D under the relation & is
the structure returned by the following procedure:

1. Start with a PES E ∶= ⟨E,<,#, h⟩ equal to ⟨∅,∅,∅,∅⟩.
2. Add a new event e ∶= ⟨f,C⟩ to E, where the configuration C ∈ conf (E) and

transformer f satisfy that f is enabled at state(C), and ¬(f & h(e)) holds
for every <-maximal event e in C.

3. Update <, #, and h as follows:
– for every e′ ∈ C, set e′ < e;
– for every e′ ∈ E ∖C, if e ≠ e′ and ¬(f & h(e′)), then set e′ # e;
– set h(e) ∶= f .

4. Repeat steps 2 and 3 until no new event can be added to E; return E.

Def. 3 defines the events, the causality, and conflict relations of UD,& by means
of a saturation procedure. Step 1 creates an empty PES. Step 2 defines a new
event from a transformer f that can be applied after configuration C. Step 3
defines e to be a causal successor of every dependent event in C, and defines e to
be in conflict with dependent events not in C. Since conflicts are inherited in a
PES, causal successors of e will also be in conflict with all e′ satisfying e # e′.
Events from E ∖C, which are unrelated to f in &, will remain concurrent to e.

Proposition 2. The structure UD,◇ generated by Def. 3 is a uniquely defined PES.

If & is a weak independence, every configuration of UD,& represents sequences
of transformer applications that produce the same element. If C is a configuration
that is local, meaning it has a unique maximal event, or if C is generated by an
independence, then state(C) will not be �. Treating transformers as independent
if they generate � enables greater reduction during analysis.

Theorem 1 (Well-formedness of UD,◇). Let ◇ be a weak independence
on D, let C be a configuration of UD,◇ and σ,σ′ be interleavings of C. Then:



1. state(σ) = state(σ′);

2. state(σ) ≠ � when ◇ is additionally an independence relation;

3. If C is a local configuration, then also state(σ) ≠ �.

Thm. 2 shows that the unfolding is adequate for analysis in the sense that
every sequence of transformer applications leading to non-� elements that could
be generated during standard analysis with a domain will be contained in the
unfolding. We emphasize that these sequences are only symbolically represented.

Theorem 2 (Adequacy of UD,◇). For every weak independence relation ◇
on D, and sequence of transformers σ ∈ runs(D), there is a unique configuration C
of UD,◇ such that σ ∈ inter(C).

We discuss the above theorems in the context of Fig. 2. We know that
runs(M) is in bijective correspondance with runs(CM). We said that ◇1 is a
weak independence in CM (see Sec. 4). By Thm. 2, every run of M is represented
by a unique configuration in UCM ,◇1

, and by Thm. 1 every configuration C
of UCM ,◇1

such that state(C) ≠ � is such that inter(C) ⊆ runs(M).

5.2 Abstract Unfoldings

The soundness theorems of abstract interpretation show when a fixed point
computed in an abstract domain soundly approximates fixed points in a concrete
domain. Our analysis constructs unfoldings instead of fixed points. The soundness
of our analysis does not follow from fixed point soundness because the abstract
unfolding we construct depends on the independence relation used. Though
independence may not be preserved under lifting, as shown in Ex. 2, lifted
relations can still be used to obtain sound results.

Example 4. In Ex. 2, the transformer composition f1 ○ f2 produces ⟨x↦ [2,4],
y ↦ [6,8]⟩, while f2 ○ f2 produces ⟨x ↦ [2,4], y ↦ [7,9]⟩. If f1 and f2 are
considered independent, the state of the configuration {f1, f2} is state(f1, f2) ⊓
state(f2, f1), which is the abstract element ⟨x ↦ [2,4], y ↦ [7,7]⟩ and contains
the final state ⟨x↦ 2, y ↦ 7⟩ reached in the concrete.

Thus, with sound abstractions, abstract transformers can be treated as
(weakly) independent if their concrete counterparts were (weakly) independent,
without compromising soundness of the analysis. The soundness theorem below
asserts a correspondence between sequences of concrete transformer applications
and the abstract unfolding. The concrete and abstract objects in Thm. 3 have
different type: we are not relating a concrete unfolding with an abstract unfolding,
but concrete transformer sequences with abstract configurations. Since state(C)
is defined as a meet of transformer sequences, the proof of Thm. 3 relies on the
independence relation and has a different structure from standard proofs of fixed
point soundness from transformer soundness.



Theorem 3 (Soundness of the abstraction). Let D̄ be a sound abstraction
of the analysis instance D, let ◇ be a weak independence on D, and ◇̄ be the
lifted relation on D̄. For every sequence σ ∈ runs(D) satisfying state(σ) ≠ �, there
is a unique configuration C of UD̄,◇̄ such that m(σ) ∈ inter(C).

Thm. 3 and Thm. 2 are fundamentally different. Thm. 2 shows that, given a
domain and a weak independence relation, the associated unfolding represents all
sequences of transformer applications that may be generated during the analysis
of that domain. Thm. 3 relates a concrete domain with the unfolding of an
abstract one. Given a concrete domain, a concrete weak independence, and an
abstract domain, Thm. 3 shows that every sequence of concrete transformers has
a corresponding configuration in the unfolding of the abstract domain.

Surprisingly enough, the abstract unfolding in Thm. 3 may not represent all
sequences of applications of the abstract domain in isolation (because the lifted
relation ◇̄ is not necessarily a weak independence in D̄), but will represent (this
is what the theorem asserts) all transformer applications of the concrete domain.

In Fig. 2, let ◇2 be the lifted independence of ◇1. Thm. 3 asserts that for any
σ ∈ runs(CM) there is a configuration C of UDM ,◇2

such that m(σ) ∈ inter(C).

6 Plugging Thread-Local Analysis

Unfoldings compactly represent concurrent executions using partial orders. How-
ever, they are a branching structure and one extension of the unfolding can
multiply the number of branches, leading to a blow-up in the number of branches.
Static analyses of sequential programs often avoid this explosion (at the expense
of precision) by over-approximating (using join or widening) the abstract state
at the CFG locations where two or more program paths converge. Adequately
lifting this simple idea of merging at CFG locations from sequential to concurrent
programs is a highly non-trivial problem [8].

In this section, we present a method that addresses this challenge and can
mitigate the blow-up in the size of the unfolding caused by conflicts between
events of the same thread. The key idea of our method is to merge abstract states
generated by statements that work on local data of one thread, i.e., those whose
impact over the memory/environment is invisible to other threads. Intuitively,
the key insight is that we can merge certain configurations of the unfolding and
still preserve its structural properties with respect to interference. The state of
the resulting configuration will be a sound over-approximation of the states of
the merged configurations at no loss of precision with respect to conflicts between
events of different threads.

Our approach is to analyse M by constructing the unfolding of an abstract
domain D ∶= ⟨D,⊆, F, d0⟩ and a weak independence relation ◇ using a thread-
local procedure that over-approximates the effect of transformers altering local
variables.

Assume that M has n threads. Let F1, . . . , Fn be the partitioning of the
set of transformers F by the thread to which they belong. For a transformer



Algorithm 1: Unfolding using thread-local fixpoint analysis

1 Procedure unfold(D,◇, n)
2 Set E ∶= ⟨E,<,#, h⟩ to ⟨∅,∅,∅,∅⟩
3 forall i,C in Nn × conf (E)
4 for f enabled on tla(i, state(C))
5 e ∶= mkevent(f,C,◇)

6 if iscutoff(e,E) continue

7 Add e to E

8 Extend <, #, and h with e.

9 Procedure mkevent(f,C,◇)

10 do

11 Remove from C any <-maximal

event e such that f ◇ h(e)
12 while C changed

13 return ⟨mklabel(f),C⟩
14 Procedure mklabel(f)

15 return d↦ f(tla(p(f), d))

f ∈ Fi, we let p(f) ∶= i denote the thread to which f belongs. We define, per
thread, the (local) transformers which can be used to run the merging analysis.
A transformer f ∈ Fi is local when, for all other threads j ≠ i and all transformers
f ′ ∈ Fj we have f ◇ f ′. A transformer is global if it is not local. We denote

by F loc
i and F glo

i , respectively, the set of local and global transformers in Fi.
In Fig. 1 (a), the global transformers would be those representing the actions to
the variable g. The remaining statements correspond to local transformers.

We formalize the thread-local analysis using the function tla∶N ×D → D,
which plays the role of an off-the-shelf static analyzer for sequential thread code.
A call to tla(i, d) will run a static analyzer on thread i, restricted to F loc

i ,
starting from d, and return its result which we assume to be a sound fixed
point. Formally, we assume that if tla(i, d) returns d′ ∈ D, then for every
sequence f1 . . . fn ∈ (F loc

i )∗ we have (fn ○ . . . ○ f1)(d) ⊑ d′. This condition
requires any implementation of tla(i, d) to return a sound approximation of the
state that thread i could possibly reach after running only local transformers
starting from d.

Alg. 1 presents the overall approach proposed in this paper. Procedure unfold
builds an abstract unfolding for D under independence relation ◇. It non-
deterministically selects a thread i and a configuration C and runs a sequential
static analyzer on thread i starting on the state reached by C. If a global trans-
former f ∈ F glo

i is eventually enabled, the algorithm will try to insert it into
the unfolding. For that it first calls the function mkevent, which constructs
a history for f from C according to Def. 3, i.e., by removing from C events
independent with f until all maximal events are dependent. Function mkevent

then calls mklabel to construct a suitable label for the new event. Labels are
functions in D →D, we discuss them below. If the resulting event e ∶= ⟨f̄ ,H⟩ is
a cutoff, i.e., an equivalent event is already in the unfolding prefix, then it will
be ignored. Otherwise, we add it to E. Finally, we update relations <, #, and h
using exactly the same procedure as in Step 3 of Def. 3. In particular, we set
h(e) ∶= f̄ .

Unlike the unfolding UD,◇ of Def. 3, the events of the PES constructed by Alg. 1
are not labelled by transformers in F , but by ad-hoc functions constructed



by mklabel. An event in this PES represents the aggregated application of
multiple local transformers, summarized by tla into a fixed point, followed by
the application of a global transformer. Function mklabel constructs a collapsing
transformer that represents such transformation of the program state. Given a
global transformer f it returns a function f̄ ∈ D → D that maps a state d to
another state obtained by first running tla on f ’s thread starting from d and
then running f . While an efficient implementation of Alg. 1 does not need to
actually construct this transformer, we formalize it here because it is necessary
to define how to compute the state of a configuration, state(C).

We denote by QD,◇ the PES constructed by a call to unfold(D,◇, n). When
the tla performs a path-insensitive analysis, the structure QD,◇ is (i) path-
insensitive for runs that execute only local code, (ii) partially path-sensitive for
runs that execute one or more global transformer, and (iii) flow-sensitive with
respect to interference between threads. We refer to this analysis as a causally-
sensitive analysis as it is precise with respect to the dynamic interference between
threads.

Alg. 1 embeds multiple constructions explained in this paper. For instance,
when tla is implemented by the function g(d, i) ∶= d and the check of cutoffs
is disabled (iscutoff systematically returns false), the algorithm is equivalent
to Def. 3. We now show that QD,◇ is a safe abstraction of D when tla performs
a non-trivial operation.

Theorem 4 (Soundness of the abstraction). Let ◇ be a weak indepen-
dence on D and PD,◇ the PES computed by a call to unfold(D,◇, n) with
cutoff checking disabled. Then, for any execution σ ∈ runs(D) there is a unique
configuration C in PD,◇ such that σ̂ ∈ inter(C).

6.1 Cutoff Events: Pruning the Unfolding

If we remove the conditional statement in line 6 of Alg. 1, the algorithm would
only terminate if every run of D contains finitely many global transformers.
This conditional check has two purposes: (1) preventing infinite executions from
inserting infinitely many events into E ; (2) pruning branches of the unfolding that
start with equivalent events. The procedure iscutoff decides when an event
is marked as a cutoff [17]. In such cases, no causal successor of the event will
be explored. The implementation of iscutoff cannot prune “too often”, as we
want the computed PES to be a complete representation of behaviours of D (e.g.,
if a transformer is fireable, then some event in the PES will be labelled by it).

Formally, given D, a PES E is D-complete iff for every reachable element
d ∈ reach(D) there is a configuration C of E such that state(C) ⊒ d. The key
idea behind cutoff events is that, if event e is marked as a cutoff, then for any
configuration C that includes e it must be possible to find a configuration C ′

without cutoff events such that state(C) ⊑ state(C ′). This can be achieved
by defining iscutoff(e,E) to be the predicate: ∃e′ ∈ E such that state([e]) ⊑
state([e′]) and ∣[e′]∣ < ∣[e]∣. When such e′ exists, including the event e in E is



unnecessary because any configuration C such that e ∈ C can be replayed in E
by first executing [e′] and then (copies of) the events in C ∖ [e].

We now would like to prove that Alg. 1 produces a D-complete prefix when
instantiated with the above definition of iscutoff. However, a subtle an unex-
pected interaction between the operators tla and iscutoff makes it possible
to prove Thm. 5 only when tla respects independence. Formally, we require tla

to satisfy the following property: for any d ∈ reach(D) and any two global

transformers f ∈ F glo
i and f ′ ∈ F glo

j , if f ◇ f ′ then

(f ′ ○ tla(j) ○ f ○ tla(i))(d) = (f ○ tla(i) ○ f ′ ○ tla(j))(d)

When tla does not respect independence, it may over-approximate the global
state (e.g. via joins and widening) in a way that breaks the independence of
otherwise independent global transformers. This triggers the cutoff predicate to
incorrectly prune necessary events.

Theorem 5. Let ◇ be a weak independence in D. Assume that tla respects
independence and that iscutoff uses the procedure defined above. Then the PES
QD,◇ computed by Alg. 1 is D-complete.

Note that Alg. 1 terminates if the lattice order ⊑ is a well partial order (every
infinite sequence contains an increasing pair). This includes, for instance, all
finite domains. Furthermore, it is also possible to accelerate the termination
of Alg. 1 using widenings in tla to force cutoffs. Finally, notice that while we
defined iscutoff using McMillan’s size order [17], Thm. 5 also holds if iscutoff
is defined using adequate orders [5], known to yield smaller prefixes. See [24] for
additional details.

7 Experimental Evaluation

In this section we evaluate our approach based on abstract unfoldings. The goal
of our experimental evaluation is to explore the following questions:

– Are abstract unfoldings practical? (i.e., is our approach able to yield efficient
algorithms that can be used to prove properties of concurrent programs that
require precise interference reasoning?)

– How does abstract unfoldings compare with competing approaches such as
thread-modular analysis and symbolic partial order reduction?

Implementation. To address these questions, we have implemented a new program
analyser based on abstract unfoldings baptized APoet, which implements an
efficient variant of the exploration algorithm described in Alg. 1. The exploration
strategy is based on Poet [23], an explicit-state model checker that implements
a super-optimal partial order reduction method using unfoldings.

As described in Alg. 1, APoet is an analyser parameterized by a domain and
a set of procedures: tla, iscutoff and mkevent. As a proof of concept, we have



implemented an interval analysis and a basic parametric segmentation functor
for arrays [4], which we instantiate with intervals and concrete integers values (to
represent offsets). In this way, we are able to precisely handle arrays of threads
and mutexes. APoet supports dynamic thread creation and uses CIL to inline
functions calls. The analyser receives as input a concurrent C program that uses
the POSIX thread library and parameters to control the widening level and the
use of cutoffs. We implemented cutoffs according to the definition in Sec. 6.1
using an hash table that maps control locations to abstract values and the size
of the local configuration of events.

APoet is parameterized by a domain functor of actions that is used to
define independence and control the tla procedure. We have implemented an
instance of the domain of actions for memory accesses and thread synchronisations.
Transformers record the segments of the memory, intervals of addresses or sets of
addresses, that have been read or written and synchronisation actions related to
thread creation, join and mutex lock and unlock operations. This approach is
used to compute a conditional independence relation as transformers can perform
different actions depending on the state. The conditional independence relation
is dynamically computed and is used in the procedure mkevent.

Finally, the tla procedure was implemented with a worklist fixpoint algo-
rithm which uses the widening level given as input. In the interval analysis, we
guarantee that tla respects independence using a predicate over the actions that
identifies whether a transformer is local or global. We currently support two
modes in APoet: one that assumes programs are data-race free and considers
any thread synchronisation (i.e., thread creation/join and mutex lock/unlock)
a global transformer, and a second that considers any heap access or thread
synchronisation a global transformer and can be used to detect data races.

Benchmark Selection. We used six benchmarks adapted from the SV-COMP’17
(corresponding to nine rows in Table 1) and four parametric programs (the
remaining fifteen rows in Table 1) written by the authors: map-reduce DNA
sequence analysis, producer-consumer, parallel sorting, and a thread pool. The
majority of the SV-COMP benchmarks are not applicable for this evaluation
since they are data deterministic (whereas our approach is primarily for data non-
deterministic programs) or create unboundedly many threads, or use non-integer
data types (e.g., structs, which are not currently supported by our prototype).
Thus, we devised parametric benchmarks that expose data non-determinism and
complex synchronization patterns, where the correctness of assertions depend on
the synchronization history. We believe that all new benchmarks are as complex
as the most complex ones of the SV-COMP (excluding device drivers).

Each program was annotated with assertions enforcing, among others, prop-
erties related to thread synchronisation (e.g., after spawning the worker threads,
the master analyses results only after all workers finished), or invariants about
data (e.g., each thread accesses a non-overlapping segment of the input array).

Tool Selection. We compare our approach against the two approaches most
closely related to ours: abstract interpretation based on thread-modular methods



Table 1. Experimental results. All experiments with APoet, Impara and cbmc were
performed on an Intel Xeon CPU with 2.4 GHz and 4 GB memory with a timeout of
30 minutes; AstreeA was ran on HP ZBook with 2.7 GHz i7 processor and 32 GB
memory. Columns are: P : nr. of threads; A: nr. of assertions; t(s): running time (TO -
timeout); E: nr. of events in the unfolding; Ecut: nr. of cutoff events; W : nr. of warnings;
V : verification result (S - safe; U - unsafe); N : nr. of node states; A ∗ marks programs
containing bugs. <2 reads as “less than 2”.

Benchmark APoet AstreeA Impara cbmc 5.6

Name P A t(s) E Ecut W t(s) W V t(s) N V t(s)
atgc(2) 3 7 0.37 47 0 1 1.07 2 - TO - S 2.37
atgc(3) 4 7 5.78 432 0 1 1.69 2 - TO - S 6.6
atgc(4) 5 7 132.08 7195 0 1 2.68 2 - TO - S 20.22
cond 5 2 0.55 982 0 2 0.71 2 - TO - S 34.39
fmax(2,3) 2 8 0.70 100 15 0 0.31 0 - TO - - TO
fmax(3,3) 2 8 0.58 85 11 0 <2 2 - TO - - TO
fmax(5,3) 2 8 0.56 85 11 0 1.50 2 - TO - - TO
fmax(2,4) 2 8 3.38 277 43 0 <2 2 - TO - - TO
fmax(2,6) 2 8 45.82 1663 321 0 <2 2 - TO - - TO
fmax(4,6) 2 8 61.32 2230 207 0 <2 2 - TO - - TO
fmax(2,7) 2 8 146.19 3709 769 0 1.87 2 - TO - - TO
fmax(4,7) 2 8 285.23 6966 671 0 <2 2 - TO - - TO
lazy 4 2 0.01 72 0 0 0.50 2 - TO - S 3.59
lazy* 4 2 0.01 72 0 1 0.49 2 - TO - U 3.50
monab1 5 1 0.27 982 0 0 0.61 0 - TO - S 38.51
monab2 5 1 0.25 982 0 0 0.58 1 - TO - S 37.34
rand 5 1 0.40 657 0 0 3.32 0 - TO - - TO
sigma 5 5 2.62 7126 0 0 0.43 0 - TO - S 189.09
sigma* 5 5 2.64 7126 0 1 0.43 1 - TO - U 141.35
stf 3 2 0.01 69 0 0 0.66 2 S 5.93 250 S 2.12
tpoll(2)* 3 11 1.23 141 7 1 1.97 2 U 0.64 80 - TO
tpoll(3)* 4 11 109.22 1712 90 2 3.77 3 U 0.72 113 - TO
tpoll(4)* 5 11 1111.46 33018 1762 2 8.06 3 U 0.78 152 - TO
thpool 2 24 33.47 353 103 0 1.44 5 S TO - - TO

(represented by the tool AstreeA) and partial-order reductions (PORs) han-
dling data-nondeterminism (represented by two tools, Impara and cbmc 5.6).
AstreeA implements thread-modular abstract interpretation for concurrent pro-
grams [19], Impara combines POR with interpolation-based reasoning to cope
with data non-determinism [25], and cbmc uses a symbolic encoding based on
partial orders [2]. We sought to compare against symbolic execution approaches
for multithreaded programs, but we were either unable to obtain the tools from
the authors or the tools were unable to parse the benchmarks.

Experimental Results. Table 1 presents the experimental results. When the
program contained non-terminating executions (e.g., spinlocks), we used 5 loop
unwindings for cbmc as well as cutoffs in APoet and a widening level of 15.
For the family of fmax benchmarks, we were not able to run AstreeA on all
instances, so we report approximated execution times and warnings based on the



results provided by Antoine Miné on some of the instances. With respect to the
size of the abstract unfolding, our experiments show that APoet is able to explore
unfoldings up to 33K events and it was able to terminate on all benchmarks with
an average execution time of 81 seconds. In comparison with AstreeA, APoet is
far more precise: we obtain only 12 warnings (of which 5 are false positives)
with APoet compared to 43 (32 false positives) with AstreeA. We observe a
similar trend when comparing APoet with the mthread plugin for Frama-c [26]
and confirm that the main reason for the source of imprecision in AstreeA is
imprecise reasoning of thread interference. In the case of APoet, we obtain
warnings in benchmarks that are buggy (lazy*, sigma* and tpoll* family),
as expected. Furthermore, APoet reports warnings in the atgc benchmarks
caused by imprecise reasoning of arrays combined with widening and also in
the cond benchmark as it contains non-relational assertions.

APoet is able to outperform Impara and cbmc on all benchmarks. We be-
lieve that these experiments demonstrate that effective symbolic reasoning with
partial orders is challenging as cbmc only terminates on 46% of the benchmarks
and Impara only on 17%.

8 Related Work

In this section, we compare our approach with closely related program analysis
techniques for (i) concurrent programs with (ii) a bounded number of threads
and that (iii) handle data non-determinism.

The thread-modular approach in the style of rely-guarantee reasoning has
been extensively studied in the past [19,18,3,16,9,14,12,20]. In [19], Miné proposes
a flow-insensitive thread-modular analysis based on the interleaving semantics
which forces the abstraction to cope with interleaving explosion. We address the
interleaving explosion using the unfolding as an algorithmic approach to compute
a flow and path-sensitive thread interference analysis. A recent approach [20] uses
relational domains and trace partitioning to recover precision in thread modular
analysis but requires manual annotations to guide the partitioning and does not
scale with the number of global variables. The analysis in [7] is not as precise
as our approach (confirmed by experiments with Duet on a simpler version
of our benchmarks) as it employs an abstraction for unbounded parallelism.
The work in [14] presents a thread modular analysis that uses a lightweight
interference analysis to achieve an higher level of flow sensitivity similar to [7].
The interference analysis of [14] uses a constraint system to discard unfeasible
pairs of read-write actions which is static and less precise than our approach
based on independence. The approach is also flow-insensitive in the presence of
loops with global read operations. Finally, the method in [12] focuses on manual
thread-modular proofs, while our method is automatic.

The interprocedural analysis for recursive concurrent programs of [13] does
not address the interleaving explosion. A related approach that uses unfoldings is
the causality-based bitvector dataflow analysis proposed in [8]. There, unfoldings
are used as a method to obtain dataflow information while in our approach they



are the fundamental datastructure to drive the analysis. Thus we can apply
thread-local fixpoint analysis while their unfolding suffers from path explosion
due to local branching. Furthermore, we can build unfoldings for general domains
even with invalid independence relations while their approach is restricted to the
independence encoded in the syntax of a Petri net and bitvector domains.

Compared to dynamic analysis of concurrent programs [1,6,15,11], our ap-
proach builds on top of a (super-)optimal partial-order reduction [23] and is able
to overcome a high degree of path explosion unrelated to thread interference.

9 Conclusion

We introduced a new algorithm for static analysis of concurrent programs based
on the combination of abstract interpretation and unfoldings. Our algorithm
explores an abstract unfolding using a new notion of independence to avoid
redundant transformer application in an optimal POR strategy, thread-local fixed
points to reduce the size of the unfolding, and a novel cutoff criterion based on
subsumption to guarantee termination of the analysis.

Our experiments show that APoet generates about 10x fewer false positives
than a mature thread modular abstract interpreter and is able to terminate on
a large set of benchmarks as opposed to solver-based tools that have the same
precision. We observed that the major reasons for the success of APoet are:
(1) the use of cutoffs to cope with and prune cyclic explorations caused by
spinlocks and (2) tla mitigates path explosion in the threads. Our analyser is
able to scale with the number of threads as long as the interference between
threads does not increase. As future work, we plan to experimentally evaluate
the application of local widenings to force cutoffs to increase the scalability of
our approach.

Acknowledgments. The authors would like to thank Antoine Miné for the
invaluable help with AstreeA and the anonymous reviewers for their helpful
feedback.

References

1. Parosh Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas. Optimal
dynamic partial order reduction. In Principles of Programming Languages (POPL),
pages 373–384. ACM, 2014.

2. Jade Alglave, Daniel Kroening, and Michael Tautschnig. Partial orders for efficient
bounded model checking of concurrent software. In Computer Aided Verification
(CAV), volume 8044 of LNCS, pages 141–157. Springer, 2013.

3. Jean-Loup Carre and Charles Hymans. From Single-thread to Multithreaded: An
Efficient Static Analysis Algorithm. arXiv:0910.5833 [cs], October 2009.

4. Patrick Cousot, Radhia Cousot, and Francesco Logozzo. A parametric segmentation
functor for fully automatic and scalable array content analysis. In Principles of
Programming Languages (POPL), pages 105–118. ACM, 2011.



5. Javier Esparza, Stefan Römer, and Walter Vogler. An improvement of McMillan’s
unfolding algorithm. Formal Methods in System Design, 20:285–310, 2002.

6. Azadeh Farzan, Andreas Holzer, Niloofar Razavi, and Helmut Veith. Con2Colic
testing. In Foundations of Software Engineering (FSE), pages 37–47. ACM, 2013.

7. Azadeh Farzan and Zachary Kincaid. Verification of parameterized concurrent pro-
grams by modular reasoning about data and control. In Principles of Programming
Languages (POPL), pages 297–308. ACM, 2012.

8. Azadeh Farzan and P. Madhusudan. Causal dataflow analysis for concurrent
programs. In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), volume 4424 of LNCS, pages 102–116. Springer, 2007.

9. Cormac Flanagan and Shaz Qadeer. Thread-modular model checking. In Model
Checking Software, volume 2648 of LNCS, pages 213–224. Springer, May 2003.

10. Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent Systems
– An Approach to the State-Explosion Problem, volume 1032 of LNCS. Springer,
1996.

11. Henning Günther, Alfons Laarman, Ana Sokolova, and Georg Weissenbacher. Dy-
namic reductions for model checking concurrent software. In Verification, Model
Checking, and Abstract Interpretation (VMCAI), volume 10145 of LNCS, pages
246–265. Springer, 2017.

12. Jochen Hoenicke, Rupak Majumdar, and Andreas Podelski. Thread modularity
at many levels: A pearl in compositional verification. In Proceedings of the 44th
ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017,
pages 473–485, New York, NY, USA, 2017. ACM.

13. Bertrand Jeannet. Relational interprocedural verification of concurrent programs.
Software & Systems Modeling, 12(2):285–306, March 2012.

14. Markus Kusano and Chao Wang. Flow-sensitive composition of thread-modular
abstract interpretation. In Foundations of Software Engineering (FSE), pages
799–809. ACM, 2016.

15. Kari Kähkönen, Olli Saarikivi, and Keijo Heljanko. Unfolding based automated
testing of multithreaded programs. Automated Software Engineering, 22:1–41, May
2014.

16. Alexander Malkis, Andreas Podelski, and Andrey Rybalchenko. Precise thread-
modular verification. In Static Analysis (SAS), volume 4634 of LNCS, pages
218–232. Springer, August 2007.

17. Kenneth L. McMillan. Using unfoldings to avoid the state explosion problem in
the verification of asynchronous circuits. In Computer Aided Verification (CAV),
volume 663 of LNCS, pages 164–177. Springer, 1993.

18. Antoine Miné. Static analysis of run-time errors in embedded real-time parallel C
programs. Logical Methods in Computer Science, 8(1), March 2012.

19. Antoine Miné. Relational thread-modular static value analysis by abstract inter-
pretation. In Verification, Model Checking, and Abstract Interpretation (VMCAI),
volume 8318 of LNCS, pages 39–58. Springer, 2014.

20. Raphaël Monat and Antoine Miné. Precise thread-modular abstract interpretation
of concurrent programs using relational interference abstractions. In Verification,
Model Checking, and Abstract Interpretation (VMCAI), volume 10145 of LNCS,
pages 386–404. Springer, 2017.

21. Mogens Nielsen, Gordon Plotkin, and Glynn Winskel. Petri nets, event structures
and domains, part I. Theoretical Computer Science, 13(1):85–108, 1981.

22. Doron Peled. All from one, one for all: on model checking using representatives. In
Computer Aided Verification (CAV), volume 697 of LNCS, pages 409–423. Springer,
1993.



23. César Rodŕıguez, Marcelo Sousa, Subodh Sharma, and Daniel Kroening. Unfolding-
based partial order reduction. In Concurrency Theory (CONCUR), volume 42 of
LIPIcs, pages 456–469. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2015.

24. Marcelo Sousa, César Rodŕıguez, Vijay D’Silva, and Daniel Kroening. Abstract
interpretation with unfoldings. CoRR, abs/1705.00595, 2017.

25. Björn Wachter, Daniel Kroening, and Joël Ouaknine. Verifying multi-threaded
software with Impact. In Formal Methods in Computer-Aided Design (FMCAD),
pages 210–217, 2013.

26. Boris Yakobowski and Richard Bonichon. Frama-C’s Mthread plug-in. Report,
Software Reliability Laboratory, 2012.


	Abstract Interpretation with Unfoldings
	1 Introduction
	2 Motivating Example and Overview
	3 Preliminaries
	4 Independence for Transformers
	5 Unfolding of an Abstract Domain with Independence
	5.1 The Unfolding of a Domain
	5.2 Abstract Unfoldings

	6 Plugging Thread-Local Analysis
	6.1 Cutoff Events: Pruning the Unfolding

	7 Experimental Evaluation
	8 Related Work
	9 Conclusion


