
Fixed Points for Multi-Cycle Path Detection
Vijay D’Silva

Computing Laboratory
Oxford University, U.K.

Email: vijay.dsilva@comlab.ox.ac.uk

Daniel Kroening
Computing Laboratory

Oxford University, U.K.
Email: daniel.kroening@comlab.ox.ac.uk

Abstract—Accurate timing analysis is crucial for obtaining
the optimal clock frequency, and for other design stages such
as power analysis. Most methods for estimating propagation
delay identify multi-cycle paths (MCPs), which allow timing to
be relaxed, but ignore the set of reachable states, achieving
scalability at the cost of a severe lack of precision. Even
simple circuits contain paths affecting timing that can only
be detected if the set of reachable states is considered. We
examine the theoretical foundations of MCP identification and
characterise the MCPs in a circuit by a fixed point equation. The
optimal solution to this equation can be computed iteratively
and yields the largest set of MCPs in a circuit. Further, we
define conservative approximations of this set, show how different
MCP identification methods in the literature compare in terms
of precision, and show one method to be unsound. The practical
application of these results is a new method to detect multi-cycle
paths using techniques for computing invariants in a circuit. Our
implementation performs well on several benchmarks, including
an exponential improvement on circuits analysed in the literature.

I. I

A primary feature of high performance integrated circuits is
their clock frequency. The maximal clock speed for a circuit is
determined using timing analysers that operate on information
culled from several design stages such as simulation, logic
synthesis and layout. This paper demonstrates via theoretical
and experimental results that invariants of a sequential circuit
can improve the efficiency and accuracy of timing analysis, just
as spatio-temporal correlations improve power-estimation [7].

The topological delay of a circuit is an efficiently com-
putable but excessively pessimistic upper-bound on propaga-
tion delay. Considering false paths, which do not propagate
signals, and multi-cycle paths (MCPs), which can take more
than one clock cycle to propagate a value, allows timing
constraints to be relaxed. Practical techniques for identifying
multi-cycle paths must be efficient, accurate and sound. Delay-
independent methods are particularly important because they
can be be applied early in the design flow. An unsound analysis
may result in speed-paths in the post-silicon phase: paths that
do not meet physical timing requirements. Such errors are
horrendously expensive to rectify.

Multi-cycle paths and their effect on timing optimisation
were first studied in [1]. Multi-cycle path identification tech-
niques can be classified along three dimensions: (1) the topo-

This research is supported by the Semiconductor Research Corporation
(SRC) under contract no. 2006-TJ-1539 and by a Microsoft European PhD
Fellowship.

Combinational

DQD D Q Q

Clk

In1

In2

Out

Cloud

Logic

Fig. 1. Circuit with MCPs due to reachable states

logical granularity; combinational paths or register pairs, (2)
the criterion used; either sensitisation or state transitions and
(3) reachability information considered. In early work, a delay-
based sensitisation criterion and an explicit representation of
the reachable states was used to identify individual paths [1],
[4], [11]. The number of paths and states in a circuit are
respectively exponential in the number of gates and registers –
both already large values – so an explicit analysis is doomed.

To combat path explosion, pairs of registers, called multi-
cycle pairs, have been analysed instead of individual paths [9].
State-explosion is overcome by considering all and not just
reachable states, which is well suited to SAT-based [8], and
ATPG-based [5] methods. The loss of precision from ignoring
reachable states prompted heuristics to examine small state
machines in the circuit and to use partial reachability infor-
mation [6].

A. Limitations in Existing Work

We discuss on three limitations in existing work:

1) Lack of precision from ignoring the reachable states.
2) Lack of scalability in enumerative methods.
3) The connection between different criteria for MCP de-

tection is unclear, making it difficult to combine them.

The problem of not considering reachable states is best il-
lustrated with an example. Consider the circuit in Figure 1.
There are two 8-bit input registers In1 and In2, and one 16-bit
output register Out. If the shift register producing the clock
for these is initialised to 100, all paths between the input and
output registers are MCPs. All techniques that do not compute
reachable states will be unable to identify these MCPs.

The trade-off between scalability and precision made by
ignoring the reachable states is evident in published bench-
marks. For example, 279 seconds were required to detect
29 pairs of registers connected by multi-cycle paths in the
s953 ISCAS benchmark in Nakamura et al.’s 1998 paper [9].
This computation time was reduced to 19.9 seconds using
BDD-based methods in 2000 [8], and to 0.5 seconds in 2002
by Higuchi’s ATPG-based procedure [5]. However, though
in 1998 [9], 4 seconds were required to detect 150 pairs of
registers connected by multi-cycle paths, including the critical
path, in the s838 benchmark, no paths were found by the
ATPG procedure published in 2002 [5], which terminated in
0.3 seconds. These two extreme examples demonstrate that
while techniques for this problem have become more efficient,
in some cases, the price is a proportional and practically
unacceptable loss of precision.

The explosion due to enumerating multi-cycle pairs is also
easy to see in Figure 1. Several existing techniques check that
every pair of input and output registers is an MCP pair, though
computing the set of reachable states of the shift register
suffices to identify all MCPs. In other words, computing
invariants about small parts of the circuit may be sufficient
to identify a large number of MCP pairs.

Finally, different criteria exist in the literature on MCP de-
tection. The relationship between these criteria is unclear and
occludes combinations of methods based on their efficiency
and precision.

B. Contributions and Organisation

This paper contains the following contributions.

1) Fixed point characterisation of the set of MCPs: This
characterisation yields an iterative method for computing
the largest set of multi-cycle paths in the circuit.

2) Relationship between approximate MCP criteria: We
define a general notion of a sound MCP criterion. Thus
we can identify methods that are sound and show one
criterion to be unsound. Additionally, the relative preci-
sion of different methods can be stated mathematically.

3) MCP identification using invariants: We use our theo-
retical results to devise a method for MCP detection
by computing invariants of small parts of the circuit,
dramatically improving scalability.

Our fixed point characterisation is obtained by modelling the
set of reachable states and paths in a circuit as a complete
lattice. We define a function on this lattice that iteratively
eliminates paths that violate the MCP criterion. The largest
set of MCPs in the circuit is an extremal fixed point of this
function. This mathematical setting makes it easy to identify
sound criteria and relate them.

The paper is organised as follows: Section II establishes the
mathematical framework and the main characterisation, Sec-
tion III identifies and relates sound MCP criteria, Section IV
presents a method for extracting invariants which is evaluated
in Section V.

II. M-C P  F P

A. Basic Definitions

Let B = {0, 1} be the set of Boolean values. For simplicity,
we consider circuits that contain only  gates and inverters.

Definition 1: A netlist C is a directed graph (V, E, τ), where
V is a finite set of vertices, E ⊆ V × V is the set of directed
edges and τ : V → {, , , } maps a vertex to its
type, where  is an  gate,  is an inverter,  is a
register, and  is an input. The in-degree of a vertex of
type  is at least one, of type  and  is exactly one
and of type  is zero.

We write v1 → v2 iff (v1, v2) ∈ E and v1 { v2 if there is
a path from v1 to v2. A combinational path p is a sequence
of vertices v0, . . . , vn such that vi → vi+1 and τ(vi) ,  for
0 ≤ i ≤ n, and there exist v, v′ ∈ V with v → v0, vn → v′, and
τ(v) = τ(v′) = . The vertices in p are called path-inputs (or
on-path inputs). A side-input is a vertex v such that v → vi

for some vi in p and v is not a path-input. We require that
all combinational paths are acyclic. Let Paths(C) be the set of
combinational paths in a netlist C.

A state of a netlist is a mapping of registers to Booleans. Let
~r be a vector of the registers r1 to rn in a netlist. An element
(b1, . . . , bn) of Bn represents a state in which ri has the value
bi. A netlist defines a finite state machine or transition system.

Definition 2: A netlist C with n registers and m inputs
defines a transition system MC = (S , I,T, S 0), where S = Bn

is the set of states, I = Bm is the set of inputs, S 0 ⊆ S is the
set of initial states, and T ⊆ S × I×S is the transition relation.
If a transition (s, i, s′) ∈ T , then the result of providing the
input i when the circuit C is in state s is the state s′.

A state s ∈ S is reachable if there is a sequence of
transitions that respect T from a state in S 0 to the state s.
Let Reach(C) denote the set of reachable states of a circuit C
as defined by MC . Let r(s) denote the value of register r in
state s.

B. Multi-Cycle Paths

We adapt the definition of MCPs in [1] to netlists. A
controlling value of a logic gate determines the gate’s output
value irrespective of other inputs. If e is the controlling value
of a gate, ē is the non-controlling value. For example, the
controlling value of an  gate is 0 and of an  gate is 1.

A multi-cycle path can take more than one cycle to stabilise,
and a k-cycle MCP (k-MCP) can take at least k cycles
to stabilise. Observe that a (k + 1)-MCP is also a k-MCP.
Stabilisation is defined using dynamic sensitisation [2], [12].

Definition 3: Given a delay assignment, a combinational
path p in C is dynamically sensitisable iff there exists a
reachable state, and an input such that each pair of gates vi−1, vi

in p satisfies two conditions:
1) if any input of vi has a controlling value, vi−1 must have

the controlling value and be the first to present it;
2) if all inputs to vi have non-controlling values, vi−1 must

be the last to present its value.

A dynamically sensitisable path is required to propagate at
least one value. Formalising this condition with a logical pred-
icate enables us to encode MCP identification as a satisfiability
problem, and facilitates the characterisation we provide.

Let p be a combinational path from register r1 to r2. Let
del(v) denote the delay assigned to a gate v. If vi is the path
input to a gate vi+1, let v′i denote the side input. Define the
predicate cont(vi) to be true if vi has the controlling value for
vi+1. The predicate dsen(p, s, i), defined below, is true for a
path p = v1 . . . vn+1, state s, and input i if applying the input
i in state s dynamically sensitises p. The parameters i and s
are implicit in determining the values of vi and v′i .

dsen(p, s, i) def
=

n∧
j=1

cont(v′j)⇒ (cont(v j) ∧ del(v j) < del(v′j))

∧¬cont(v j)⇒ (¬cont(v′j) ∧ del(v j) > del(v′j))

If the input to a path p changes and p cannot be dynamically
sensitised for the next k cycles, then p is a k-MCP. The
predicate mcp below is true if every change in the input to p
(here r1) is followed by k cycles in which p is not dynamically
sensitised.

mcp(p, k) def
= ∀s0 ∈ Reach(C), (s0, i1, s1) . . . (sn−1, in, sn) ∈ T :

r1(s0) , r1(s1)⇒
k∧

j=1

¬dsen(p, s j, i j)

The paths in a circuit that satisfy mcp(p, 2) are the set
of MCPs. Such a definition of the set of MCPs provides
no insight into how this set or conservative approximations
thereof can be computed. Instead, we define the set of MCPs
using fixed points.

C. MCPs as Fixed Points

We first introduce lattices and fixed points. A partial order
on a set D is a binary relation v that is

1) reflexive: d v d for d ∈ D,
2) anti-symmetric: d1 v d2 ∧ d2 v d1 ⇒ d1 = d2, and
3) transitive: d1 v d2 ∧ d2 v d3 ⇒ d1 v d3.

An upper bound of an element d is any d′ such that d v d′.
The least upper bound of d1, d2, denoted d1td2, is the smallest
upper bound of d1 and d2 with respect to v. Lower bounds
and greatest lower bounds, denoted u, are similarly defined. A
lattice is a set with a partial order v and the operators t and
u. A lattice is complete if any subset of D has a least upper
bound in D. A complete lattice, denoted (D,v,t,u,⊥,>), has
a least element, denoted ⊥ and a greatest element denoted >.

Example 1: Let A be a finite set and D = ℘(A) be the
power-set of A. We have the complete lattice (D,⊆,∪,∩, ∅, A),
where the partial order is subset inclusion, the least upper
bound is union, and the greatest lower bound is intersection,
the least element is ∅, and the greatest element is A.

Let F : D → D be a function on a complete lattice. F is
monotone if whenever d1 v d2, it holds that F(d1) v F(d2). A
fixed point of F is any value d such that F(d) = d. At this

juncture, we recall two classic results in lattice theory, the
Knaster-Tarski and Kleene fixed point theorems. The Kleene
theorem requires that a function is continuous on the lattice,
a stronger condition than monotonicity. Though we do not
discuss continuity further, the functions we introduce satisfy
this condition, allowing using the theorem.

Theorem 1: Let F be a continuous and hence monotone
function on a complete lattice with least element ⊥.

• (K-T) The set of fixed points of F forms a
complete lattice.

• (K) If F is continuous, the least upper bound of the
set {Fn(⊥)|n ≥ 0} is the least fixed point of F.

These results have two implications. If we formalise the
set of MCPs as a fixed point of a monotone function on a
complete lattice, by the Knaster-Tarski theorem, such a fixed
point is guaranteed to exist. If the lattice is finite as in our
case, the Kleene fixed point also allows us to compute the
least fixed point by iteratively applying F. Let lfp(F) denote
the least fixed point of F.

We now introduce the lattice of approximate MCPs. An
element of the lattice is a set of states and combinational paths
(Q, P), representing that the states in Q have been analysed and
the paths in P are considered potential MCPs. We can order
these elements, denoted (Q, P) v (Q′, P′), by the information
they contain about MCPs. If Q ⊆ Q′, then (Q′, P′) contains
more states from which a path may be sensitised and provides
more precise information. Similarly, if P′ ⊇ P, then some paths
have been eliminated from P because they may be sensitisable,
hence P′ is a more conservative approximation. This lattice is
defined formally below.

Definition 4: Let C be a circuit with set of states S and
combinational paths Paths(C). The MCP lattice is defined as
(D,v,t,u, (Q⊥, P⊥), (Q>, P>)), where

1) D = ℘(S)×℘(Paths(C)), contains sets of states and paths,
2) (Q, P) v (Q′, P′) if Q ⊆ Q′ and P ⊇ P′,
3) (Q, P) t (Q′, P′) = (Q ∪ Q′, P ∩ P′),
4) (Q, P) u (Q′, P′) = (Q ∩ Q′, P ∪ P′), and
5) (Q⊥, P⊥) = (∅,Paths(C)), and (Q>, P>) = (S , ∅) are the

bottom and top elements respectively.

Observe that the set of all states is considered and not just
the set of reachable states. The bottom element contains no
states and all paths, modelling the situation of least informa-
tion in which no states are known and all paths may be MCPs.
The top element similarly models the most conservative result
in which all states are considered and no MCPs are detected.

We recall the standard next-state function of a transition
relation. For any set of states Q ⊆ S of a transition system
with transition relation T , let next(Q) = {s′ ∈ S | s ∈
Q, (s, i, s′) ∈ T for some input i and some state s ∈ Q }. An
element of the MCP lattice can be refined using next states.
Let MC = (S , I,T, S 0) be a transition system. The refinement
function using dynamic sensitisation is

Fdsen((Q, P)) =
{

(S 0,Paths(C)) if (Q, P) = (Q⊥, P⊥)
(Q ∪ next(Q), P \ P′) otherwise

where P′ = {p|s1 ∈ Q, (s1, i1, s2), (s2, i2, s3) ∈ T, r → p →
r′, r(s1) , r(s2), and dsen(p, s2, i2)} is the set of paths dy-
namically sensitised in a transition from s2 ∈ Q.

Applying Fdsen to (Q, P) does not decrease Q or increase
P, thus Fdsen is a monotone function. Consider the sequence
F(⊥), F(F(⊥)) = F2(⊥), . . . , Fn(⊥), where ⊥ = (Q⊥, P⊥). The
first element of the sequence contains the initial states and the
set of all combinational paths. Subsequent elements iteratively
refine the set of MCPs while considering more reachable
states. The lattice is finite hence complete, so by the Kleene
fixed point theorem, the sequence converges to lfp(Fdsen). The
first result of this paper is that this fixed point is exactly the
set of MCPs in a circuit.

Theorem 2: Let C be a circuit, and (Q, P) = lfp(Fdsen). For
any path p ∈ Paths(C), mcp(p, 2) is true iff p ∈ P.

Proof: (⇒) If p ∈ P, for all states s ∈ Q, and transitions
(s1, i1, s2) ∈ T , it must be that r(s) = r(s′) or that for all
inputs i2, ¬dsen(p, s2, i2) holds. The set Q in the fixed point
is precisely Reach(C), so mcp(p, 2) holds.
(⇐) If mcp(p, 2) holds, then by definition, from every reach-
able state s0 and transition to states s1 and input i1, if
r(s0) , r(s1), then ¬dsen(p, s1, i1) holds. One can show by
induction that if p is in the set of paths in one iteration, then
p is not removed by applying Fdsen.

This characterisation provides an algorithm for iteratively
computing the reachable states and simultaneously refining the
set of MCPs. Thus it is guaranteed to contain the largest set
of MCPs that can be identified using delay and reachability
information. However, this set is in general expensive to
compute, so we aim for conservative approximations.

III. AMCP C

We now focus on approximate criteria for MCP identifi-
cation. An error in the result of an MCP analysis can have
dire consequences leading to design errors that may only be
detected in silicon. Approximate solutions must therefore be
sound. That is, the solution must be a subset of the exact
set of MCPs. Lemma 1 allows us to derive sound results
by approximating the function Fdsen instead of the result
of the analysis. Such an approach is common in program
analysis and verification [3]. If for all (Q, P) in this lattice,
F(Q, P) v G(Q, P), we say that F is more precise than G.

Lemma 1: Let G be a monotone function on the MCP
lattice. If Fdsen is more precise than G, lfp(Fdsen) v lfp(G).

The lemma holds because Fdsen(⊥) v G(⊥) by assumption.
Further, every application of the two functions satisfies this
condition. If lfp(Fdsen) = (Q, P) and lfp(G) = (Q′, P′), then
(Q, P) v (Q′, P′) hence P′ ⊆ P as required for soundness.

We can now classify the relative precision of different
techniques in the literature by viewing them as functions over
the MCP lattice. Recall that static co-sensitisation is a delay-
independent sensitisation condition [2].

Definition 5: A path p is statically co-sensitisable iff there
exists a reachable state, and an input to p such that, if a side-
input to a gate g in p has a controlling value, the path input
to g has the controlling value.

As before, we can encode this condition as a predicate
(which is directly applicable in SAT-based methods). The co-
sensitisation predicate for a path p = v1 . . . vn+1, input i and
state s is defined as

csen(p, s, i) def
=

n∧
j=1

(
cont(v′j)⇒ cont(vi)

)
∧
(
¬cont(vi)⇒ ¬cont(v′i)

)
.

For any p, s, i as above, observe that dsen(p, s, i) ⇒
csen(p, s, i), because co-sensitisation does not require delay
constraints to be met. Thus, it is easier to co-sensitise a path
in a circuit. Define the function Fcsen similar to Fdsen using
csen instead of dsen. It holds that lfp(Fdsen) v lfp(Fcsen).

Relaxing delay constraints is one method of sound approx-
imation. Another is to consider all states instead of reachable
states – an approach that works well with SAT solvers. Let F
be Fdsen or Fcsen. The function F̂, which ignores reachable
states, is obtained by defining F̂(Q⊥, P⊥) to be (S , Paths(C))
instead of (S 0, Paths(C)), where S includes all states. Then,
lfp(F̂) will be (S , P) for some P because S cannot grow larger.

A third approximate method considers pairs of registers
instead of combinational paths. This method can be modelled
in our setting by viewing a register pair as all combinational
paths between the pair. If one path between the registers is
sensitisable, all paths are removed from the set of possible
MCPs. Let Paths(r1, r2) denote the paths between r1 and r2
and rp

1 , r
p
2 denote the source and sink register for a path

p. Let Gdsen be defined as Fdsen except that Gdsen(Q, P) =
(Q ∪ next(Q), P \ P′′), where P′′ = ∪p∈P′Paths(rp

1 , r
p
2), where

P′ is as before. Observe that P′ ⊆ P′′, so for any (Q, P),
Fdsen(Q, P) v Gdsen(Q, P). It follows that the least fixed point
of Gdsen is also a sound approximation.

Approximation methods can further be combined. For ex-
ample, [13] uses csen with paths, but no reachable states.
These functions are summarised in Table I with references
indicating where they appear in the literature. The ∼ symbol
indicates that partial reachability information is considered.
Some work uses a condition tran, which we discuss next.

For a path p between r1 and r2, the transition condition is:

tran(p) def
= ∀s0 ∈ Reach(C), (s0, i1, s1), (s1, i2, s2) ∈ T :

r1(s0) , r1(s1)⇒ r2(s1) , r2(s2)

The next example shows that this condition is not sound.
Example 2: Consider the circuit below with r1 and r2

initialised to 0.

Q
r1

D

D

Q

Q

r2

r3

D

The set of reachable states, written as (r1, r2, r3) is
{(0, 0, 0), (0, 1, 0), (1, 1, 0)}. The transition criterion is satisfied
for the pair (r1, r3). Consider the delay assignment of 5, 10

Function Ref. Topology Condition Reachability
Fdsen [1] Paths dsen 3
Fcsen [4] Paths csen 3

F̂dsen Paths dsen ×

F̂csen [13] Paths csen ×

Gdsen [10] Pairs dsen 3
Gtran [9] Pairs tran 3
G′tran [6] Pairs tran ∼

Ĝtran [8] Pairs tran ×

Ĝcsen [13] Pairs csen ×

TABLE I
D MCP  

Fdsen

Fcsen
̂Fdsen

Gdsen

̂Fcsen
Gcsen

̂Gdsen

Invdsen

Invcsen

̂Gcsen

Fig. 2. Lattice of MCP refinement functions

and 15 nanoseconds for , , and  gates. If the state of
(r1, r2) changes from (1, 1) to (0, 0), the 0 from r1 arrives at
the  gates before the value from r2 sensitising the path. C

Though the tran condition is unsound, methods using this
condition are easy to remedy, by simply using csen instead.
We conclude this section with a theorem relating different
approximate methods (shown pictorially to save space).

Theorem 3: If a function F refines G, both defined over the
MCP lattice, then F is drawn above G with a line between the
two. The refinement relations between different MCP functions
in the literature are shown in Figure 2.

Observe that the MCP refinement functions themselves form
a lattice. Any function with an F of F̂ faces path-explosion
independent of the criterion used. Functions considering reach-
able states (those besides Ĝ, F̂) face state explosion. Only
the Ĝ functions appear feasible, but ignoring reachable states
results in a severe loss of precision. The best trade-off can
be made by computing invariants of small parts of the circuit
(shown by the Inv functions). Such a method is suggested
in [6] using the tran predicate. We use sound criteria instead.

IV. I P  A R
I

In this section, we briefly outline how MCP detection
can be improved with partial reachability information. A
similar idea appears in [6]. The difference here is that we
use static co-sensitisation instead of state transitions, and use
simple statistical analysis of the circuit’s topology to identify
which invariants to compute. Further, we use state-of-the-art
model checking technology such as Bounded Model Checking

3323 3324 3325 3326 3327 146 147 0 1 2
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Latch Identifiers. Totally:3358 1

(P
e
rc

e
n
t
o
f)

 T
o
ta

l F
a
n
in

0%

11%

21%

32%

43%

53%

64%

75%

85%

96%

Fig. 3. Pareto plot of the fan-in of latches in the aeMB microprocessor core.
Note that 5 latches contribute to over 80% of the total fan-in in the circuit

10 20 30 40 50 60
0

20

40

60

80

Fanin values

F
re

q
u
e
n
c
y

Some statistics for ITC99:b12

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

Fanout

F
ra

c
ti
o
n
 o

f
th

e
 L

a
tc

h
e
s

Empirical CDF

 0 1 2 3 4 5 6 7 8 9
0

500

1000

1268

Latch Identifiers. Totally:120 1

(P
e
rc

e
n
t
o
f)

 T
o
ta

l
F

a
n
in

0%

39%

79%

100%

Fig. 4. Fanout and fan-in statistics for circuit b12 in the ITC’99 benchmarks

(BMC) with completeness threshold estimation to compute
these invariants.

We observe that a relatively small portion of a circuit
generates the majority of the clock enables. Figure 3 shows
a Pareto plot of the contribution of some latches to the total
fan-in of a microprocessor core. We can see that just 5 latches
out of 3358 contribute to 85% of the fan-in of the circuit.
Consider the b12 circuit from the ITC’99 benchmarks. The
first plot in Figure 4 is a histogram showing that for about 90
of 120 latches in the circuit, the fan-out is less than 10. Notice
that that 10 latches contribute to nearly 40% of the fan-in of
the circuit.

We call such registers significant. If the cone-of-influence of
such registers is small, computing the reachable states for this
sub-circuit is feasible. This provides approximate reachability
information about the circuit, because the reachable states
of other registers is not known. This information can then
improve the precision of MCP identification.

V. E

Our ideas have been implemented in a tool for finding multi-
cycle register pairs. Circuits can be described in Verilog or the

Circuit #MCPs Time(s)
b01 7 .03
b02 3 0
b03 122 .75
b04 121 .86
b05 108 .94
b06 4 .02
b07 418 3.18
b08 76 .28
b09 251 1.10
b10 30 .22
b11 162 2.52
b12 1260 38.79
b13 257 1.11

TABLE II
MCP   ITC B

ISCAS’89 net-list format. Our results of MCP detection on
the ITC’99 and ISCAS’89 benchmarks are given in Tables II
and III. The combination of accuracy and efficiency in our tool
exceeds that of currently reported results on these benchmarks.
In some cases, the number of MCPs found is an order of
magnitude higher than those in existing literature.

Approximate reachability information is obtained by un-
winding small sub-circuits up to their reachability diameter.
This method is convenient with a SAT solver and allows
combining reachability analysis with MCP detection. The co-
sensitisation criterion from this paper is directly encoded.

Our technique scales to large circuits and has also been
tested on industrial net-lists a few megabytes large and faced
no capacity problems. In fact, the figures reported in Tables II
and III can further be reduced because we do not currently use
simulation-based filtering to eliminate easily sensitisable regis-
ter pairs. Despite this difference, our figures are comparable to
those obtained by methods using simulation and a combination
of non-formal, and hence far more efficient, heuristics.

VI. C

In this paper, we have revisited the foundations of Multi-
Cycle Path detection. We provide two main theoretical results
and a practical evaluation. The set of MCPs is characterised
by a fixed point equation. Conservative approximations of
this set can then be computed with fixed point approximation
techniques. We mathematically relate different MCP detection
methods and identify an unsound criterion in the literature,
which is quite easily rectified. Our conclusion is that a feasible
yet precise approach to MCP detection must use approximate
reachability information. This conclusion is supported by
convincing experimental results.

Acknowledgements: We thank Ranan Fraer, Horatiu Jula,
Gila Kamhi, Sasha Novakovsky, and Hadas Ronen for discus-
sions.

R

[1] P. Ashar, S. Dey, and S. Malik. Exploiting multi-cycle false paths in
the performance optimization of sequential circuits. In International
Conference on Computer-aided Design (ICCAD), pages 510–517. IEEE,
1992.

Circuit #MCPs Time(s)
s1423 1281 51.51
s1488 18 .23
s1494 18 .23
s2081 34 .03
s208a 34 .03
s208 34 .03
s298 62 .12
s386a 16 .06
s386 16 .06
s400 140 .34
s420a 134 .28
s420 86 .16
s444 140 .36
s510 25 .10
s526a 136 .42
s526 136 .42
s5378 714 36.85
s641 109 .58
s713 109 .69
s820 0 .11
s832 0 .11
s838a 526 2.78
s838 190 .68
s9234 2273 208.87
s953 82 1.12

TABLE III
MCP   ISCAS’89 B

[2] H.-C. Chen and D. H.-C. Du. Path sensitization in critical path problem.
In ICCAD, pages 208–211, 1991.

[3] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of
fixpoints. In Principles of Programming Languages (POPL), pages 238–
252. ACM, 1977.

[4] A. P. Gupta and D. P. Siewiorek. Automated multi-cycle symbolic timing
verification of microprocessor-based designs. In Design Automation
Conference (DAC), pages 113–119. ACM, 1994.

[5] H. Higuchi. An implication-based method to detect multi-cycle paths
in large sequential circuits. In Conference on Design automation, pages
164–169, New York, NY, USA, 2002. ACM Press.

[6] H. Higuchi and Y. Matsunaga. Enhancing the performance of multi-
cycle path analysis in an industrial setting. In Asia South Pacific Design
Automation Conference (ASP-DAC), pages 192–197. IEEE, 2004.

[7] R. Marculescu, D. Marculescu, and M. Pedram. Switching activity
analysis considering spatiotemporal correlations. In International Con-
ference on Computer-Aided Design (ICCAD), pages 294–299. IEEE,
1994.

[8] K. Nakamura, S. Maruoka, S. Kimura, and K. Watanabe. Multi-clock
path analysis using propositional satisfiability. In Asia South Pacific
Design Automation Conference (ASP-DAC), pages 81–86. ACM Press,
2000.

[9] K. Nakamura, K. Takagi, S. Kimura, and K. Watanabe. Waiting false
path analysis of sequential logic circuits for performance optimization.
In International Conference on Computer-aided Design (ICCAD), pages
392–395. ACM, 1998.

[10] C. Papachristou and M. Nourani. False path exclusion in delay analysis
of RTL-based datapath-controller designs. In Conference on European
design automation (Euro-DAC), pages 336–341. IEEE, 1996.

[11] A. Saldanha, H. Harkness, P. C. McGeer, R. K. Brayton, and A. L.
Sangiovanni-Vincentelli. Performance optimization using exact sensiti-
zation. In Design Automation Conference (DAC), pages 425–429. ACM
Press, 1994.

[12] J. P. M. Silva and K. A. Sakallah. An analysis of path sensitization
criteria. In ICCD, pages 68–72, 1993.

[13] K. Yang and K.-T. Cheng. Efficient identification of multi-cycle false
path. In Asia South Pacific Design Automation Conference (ASP-DAC),
pages 360–365. IEEE, 2006.

