Efficient Verification of Multi-Property Designs
(The Benefit of Wrong Assumptions)

Eugene Goldberg, Matthias Gilidemann, Daniel Kroening

Diffblue Ltd.
Oxford, UK

Abstract—We consider the problem of efficiently checking a
set of safety properties Pj,...,P, of one design. We introduce a
new approach called JA-verification, where JA stands for ‘“Just-
Assume” (as opposed to ‘‘assume-guarantee’). In this approach,
when proving a property P,, one assumes that every property
P; for j # i holds. The process of proving properties either
results in showing that P;,..., P, hold without any assumptions
or finding a ‘““debugging set” of properties. The latter identifies a
subset of failed properties that are the first to break. The design
behaviors that cause the properties in the debugging set to fail
must be fixed first. Importantly, in our approach, there is no need
to prove the assumptions used. We describe the theory behind
our approach and report experimental results that demonstrate
substantial gains in performance, especially in the cases where a
small debugging set exists.

1. INTRODUCTION

The advent of powerful model checkers based on SAT [1]-[4]
has created a new wave of research in property checking. This
research has been mostly focused on algorithms that verify
a single property for a given design. However, in practice,
engineers write many properties for one design (sometimes
hundreds and even thousands). This demands efficient and
scalable techniques for automatic verification of multiple
properties for one design.

More specifically, the problem we address is as follows. We
are given a transition relation and a set of initial states, which
specify the design. In addition, we are given a set of safety
properties P, ..., P, that are expected to hold. (In Section 5, we
consider the case where some properties are expected to fail.)
We want to check if every property P; holds. If not, we want
to have an efficient way to identify failed properties that point
to wrong design behaviors. (Thus, identification of all failed
properties is not mandatory.) One way to solve this problem is
to check whether the property P := Py A...A P holds. We will
call P the aggregate property. If P holds, then all properties
P; are proven. Otherwise, the generated counterexample (CEX
for short) identifies a subset of the failed properties, but no
information is gained about the remaining properties. The latter
can be verified by removing the failed properties from the set,
and re-iterating the procedure with a new aggregate property.

In this paper, we study an alternative approach where the
properties P; are verified separately. We will refer to this
approach as separate verification as opposed to joint verification

Supported by ERC project 280053 “CPROVER”, the H2020 FET OPEN
712689 SC? and SRC contracts no. 2012-TJ-2269 and 2016-CT-2707.

Rajdeep Mukherjee
University of Oxford
UK

of a set of properties. We will highlight three main reasons
for our interest in separate verification. First, we want to
study multi-property verification in the context of an IC3-
like model checker [3]. Such a model checker will benefit
from separate verification by generating proofs that take into
account the specifics of each property. Besides, a property
P; is a weaker version of the aggregate property P. Thus,
proving P; should be easier than P. Second, each property P;
is an over-approximation of the same set of reachable states.
Therefore, inductive invariants of already proven properties can
be re-used. The third reason is as follows. If all P; are true,
there is a common proof of this fact, namely a proof that P
holds. However, if some P; properties fail, there may not be
one universal CEX that explains all failures if the latter are
property specific. Separate verification is more relevant in such
a context.

In this paper, we introduce a version of separate verification
called JA-verification. Here, JA stands for “Just-Assume”, as
opposed to “assume-guarantee”. In JA-verification, one proves
property P;, assuming that every other property Pj, for j # i,
holds, regardless whether it is true. We will call such a proof
local as opposed to a global proof that P; is true where no
assumptions are made. JA-verification results in constructing
the set of properties P; that failed locally (if any). We show that
if the aggregate property P fails, there is at least one property
P; that fails both globally and locally. Thus, if all properties
P; hold locally it also means they hold globally.

If P; holds locally, it either holds globally as well or every
CEX that breaks P; fails some other property P; before this CEX
fails P;. That is, a CEX for P; contains a shorter CEX for P;.
This suggests that if P; holds locally, its failure (if any) is most
likely caused by failures of other properties. For this reason,
we call the set of properties that fail locally a debugging set.
This debugging set of properties points to design behaviors that
need to be fixed in the first place. The approach guarantees that
the failure of a property from the debugging set is not preceded
by a failure of any other property. JA-verification constructs a
debugging set as follows: when proving P; it assumes that all
Pj, for j# i, hold even when some of them fail. Thus, even the
wrong assumption that all P;, j # i hold proves to be useful.
For that reason, we use the term “Just Assume” to name our
approach.

To improve the efficiency of JA-verification, we exploit the
fact that Ic3 proves a property by strengthening it to make this

property inductive. Specifically, we show that the strengthening
clauses generated by IC3 can be re-used when making any other
property inductive if the same transition relation and initial
states are used. Thus, in JA-verification, clauses generated to
make P; inductive are re-used when proving P;, j # i.

Our contribution is threefold. First, we describe a new
method of multi-property verification called JA-verification
(see Section 4). It is based on the machinery of local
proofs (Sections 2 and 3) and re-use of strengthening clauses
(Section 6). Second, we show that JA-verification generates
CEXs only for a special subset of failed properties called a
debugging set. This is very important since computing a CEX
can be very expensive (e.g., if a counter is involved). Third, we
provide implementation details (Section 7) and experimental
results showing the viability of JA-verification (Section 8).

2. LocAaL AND GLOBAL PROOFS

Separate verification is based on the assumption that, in
general, proving P; is easier than P; A... A P, because P; is a
weaker property. In this section, we discuss how one can make
a proof of a property simpler if this proof is only needed in
the context of proving a stronger property.

A. Definitions

We will denote the predicates of the transition relation and
the initial states as T(S,S") and I(S) respectively. Here S and
S’ are sets of present and next state variables respectively. An
assignment s to variables S is called a state. We will refer to
a state satisfying a predicate Q(S) as a Q-state. A property is
just a predicate P(S). We will say that a P-state (respectively
P-state) is a good (respectively bad) state. A property P is
called inductive with respect to T if P(S)AT — P(S’) holds.

We will call a sequence of states (sj,...,sx) a trace if
T(si,si+1) is true for i = j,...,k— 1. We will call the trace
above initialized if s; is an [-state. Given a property P(S)
where I — P, a CEX is an initialized trace (sy,...,s;) where s;,
i=0,...,k—1 are P-states and sy is a P-state. We will refer
to a state transition system with initial states / and transition
relation T as an (I, T)-system. Given an (I, T)-system, checking

a property P is to find a CEX for P or to show that none exists.

B. Hardness of proving strong and weak properties

Let P and Q be two properties where Q is weaker than P,
i.e., P — Q. On the one hand, verification of Q should be easier
because one needs to prove unreachability of a smaller set of
bad states. On the other hand, P can be inductive even if Q
is not. In fact, the essence of IC3 is to turn a non-inductive

property into an inductive one by adding strengthening clauses.

This makes the modified property easier to prove despite the
fact that it is stronger from a logical point of view.

The reason for the paradox above is as follows. The set of
traces one needs to consider to prove Q is not a subset of those
one considers when proving P. To prove P, one needs to show

that there is no initialized trace of P-states leading to a P-state.

Thus, one does not consider traces where two P-states occur.
Proving Q is reduced to showing that there is no initialized

trace of Q-states leading to a Q-state. Since P — Q, a Q-state
is a P-state as well. On the other hand, a O-state can also be
a P-state. Thus, in contrast to the case when we prove P, to
prove Q one has to consider traces that may include two or
more different P-states.

We will refer to a regular proof of Q (where one shows
that no initialized trace of Q-states leads to a O-state) as a
global one. In the next subsection, we discuss reducing the
complexity of proving Q using the machinery of local proofs.

C. Local proofs

The intuition behind local proofs is as follows. Suppose
that one needs to prove a property Q as a step in proving a
stronger property P. Then it is reasonable to ignore traces that
do not make sense from the viewpoint of proving P. Proving
Q locally in the context of P, or just locally for short, is to
show that there does not exist an initialized trace of P-states
(rather than Q-states) leading to a QO-state.

The importance of local proofs is twofold. First, to prove
Q locally, one needs to consider only a subset of the traces
to prove P (because the set of Q-states is a subset of that of
P-states). Thus, in terms of the set of traces to consider, a
weaker property becomes also “easier”. Second, as we show
in Section 4, to prove the aggregate property P:= Py A... AP,
it suffices to prove all properties P; locally with respect to P.

It is convenient to formulate the notion of a local proof in
terms of a modified transition relation 7. We will call this
modification the projection of T onto property P and denote
it as TP, It is defined as follows.

o TP(s,s') =T(s,s), if 5 is a P-state.

o TP(s,s') =0 if s is a P-state and s # s'.

o TP(s,s') =1if s is a P-state and s = 5.

Informally, 7% is obtained from T by excluding any tran-
sitions from a P-state other than a transition to itself. Hence,
a trace in (1,T%)-system cannot have two different P-states.
Thus, a local proof of Q with respect to property P, as we
introduced above, is just a regular proof with respect to T”.
(In turn, proving Q globally is done with respect to 7'.)

Proposition 1: Let P be inductive with respect to transition
relation 7. Then any property Q weaker than P (i.e., P — Q)
is inductive with respect to T°.

(The proofs of the propositions are given in [5].) Proposi-
tion 1 states that in terms of proofs by induction, proving Q
locally with respect to a stronger property P is at most as hard
as proving P itself.

3. LoCcAL PROOFS AND DEBUGGING

In this section, we explain how the machinery of local
proofs can be used to address the following problem. Given a
property P that failed, find a weaker property Q that is false
as well and can be viewed as an explanation for failure of P.
The subtlety here is that not every failed property Q where
P — O can be viewed as a reason for why P fails. We will
refer to this problem as the debugging problem.

To address the debugging problem one first needs to clarify
the relation between local and global proofs.

Proposition 2: Let P — Q. If property Q holds with respect
to T (i.e., globally), it also holds with respect to T? (..,
locally). The opposite is not true. If Q holds with respect to
TP, it either holds with respect to T or it fails with respect
to T and every CEX contains at least two P-states s’ and s”
where s’ # 5.

Informally, Proposition 2 means that proving Q locally is
almost “as good as” proving globally modulo CEXs that do
not make sense from the viewpoint of proving P. These CEXs
have at least two P-states.

One can use Proposition 2 for solving the debugging problem
as follows. Suppose that Q does not hold locally. This means
that there is a CEX of P-states leading to a Q-state. Since
P — O, a O-state is a P-state as well. So this CEX is also a
regular CEX for P. In other words, the fact that Q fails locally
means that Q can be viewed as a reason for failure of P.

Suppose that Q holds locally. Assume that Q fails globally
and (so....,S,) is a CEX where s, is a O-state. From Proposi-
tion 2, it follows that this CEX has at least two P-states. One
of these states is s, (because P — Q). Another P-state is one
of Q-states s;, i =1,...,m— 1. This means that failure of Q
is not a reason for failure of P. Indeed, in every CEX for Q,
property P fails before Q does.

Summarizing, if property Q fails (respectively holds) locally
with respect to P, failure of Q is a reason (respectively cannot
be a reason) for failure of P.

4. JA-VERIFICATION

In this section, we present a version of separate verification
called “Just-Assume” or JA-verification. As before, P denotes
the aggregate property Py A... AP, and T denotes the
projection of T onto P (see Subsection 2-C). Since every
property P; is a weaker version of P, one can use the results
of Sections 2 and 3 based on the machinery of local proofs.

We now provide a justification of proving weaker properties
locally in the context of multi-property verification. By using
the transition relation 77 to prove P;, one essentially assumes
that every property P;j, j # i holds. While this may not be the
case, nevertheless it works for two reasons. The first reason
is that if the aggregate property P fails, there is a time frame
where P (and hence some property P;) fails for the first time.
Let this be time frame number m. For every time frame number
p where p < m, the assumption that every property P;, j #i
holds is true. Thus, if P fails, there is at least one property (in
our case P;) that fails even with respect to 7°.

Here is the second reason why assuming P;, j # i works.
To get some debugging information when proving property
P, one is interested in traces where P; fails before any other
property does. By assuming P;, j # i is true, one drops the
traces where P; fails after some P;, j # i has failed.

The propositions below formalize the relation between local
proofs and multi-property verification.

Proposition 3: Property P holds with respect to T iff every
P, i=1,...,k holds with respect to 7.

Proposition 4: Property P holds with respect to 7 iff P holds
with respect to T°.

Taking into account that Proposition 3 can also be formulated
in terms of T (instead of T), Propositions 3 and 4 entail the
proposition below.

Proposition 5: Property P holds with respect to T iff every
P,i=1,...,k holds with respect to T*.

We will refer to the subset of {Py,...,P;} that consists
of properties that fail with respect to 7%, i.e., locally as a
debugging set. The following proposition justifies this name.

Proposition 6: Let the aggregate property P fail. Let D
denote the debugging set of properties. Then the failure of
properties of D is the reason for the failure of P in the following
sense. For each CEX (sy,...,s;,) for property P, the state s,
that falsifies P also falsifies at least one property P; € D.

Example 1: The Verilog code below gives an example of an
8-bit counter. This counter increments its value every time the
enable signal is true. Once the counter reaches the value of
rval it resets its value to 0. We also want to reset the counter
when signal req is true (regardless of the current value of the
counter). However, the code contains a buggy line (marked in
blue), which prohibits a reset only unless req is true.

module counter (enable,clk,req);

parameter rval = 1 << 7;

input enable, clk, req;

reg [7:0] wval;

wire reset;

initial val = 0;

assign reset = ((val == rval) && req);

always @(posedge clk) begin
if (enable) begin
if (reset) val = 0;

else val = val+1;
end
end
PO: assert property (req == 1);
P1: assert property (val <= rval);

endmodule

Let us consider verification of properties Py and P; specified
by the last two lines of the module counter. Property Py fails
globally in every time frame because req is an input variable
taking values 0 and 1. Property P; fails globally due to the
bug above. Note however, that only property Py fails locally.
Indeed, Py fails even under assumption P; = 1. However, P;
becomes true if one assumes Py = 1. The latter means that
req =1 and so the counter always resets on reaching value
rval. So the debugging set consists only of Py. The fact that
P; holds locally means that either P; is true globally or that
any CEX failing P; first fails Py. The latter implies that the
failure of Py is caused by incorrect handling of variable regq.

Note that proving P false globally is hard for a large counter
because a CEX consists of all states of the counter from 0
to rval. On the contrary, proving P; true under assumption
Po =1 is trivial because P; is inductive under this assumption.
In Table I, we compare proving properties Py and P; above
globally and locally. The first column gives the size of the
counter. The next four columns give the results of solving

TABLE I

Example with a counter. Time limit is 1 hour
#bits solving globally solving
ABC (bmc) ABC (pdr) locally

#time frames time | #time frames time

8 128 0.3s 10 0.1s 0.01s
12 2,048 | 723s 51 1.7s 0.02s
14 * * 118 99s 0.02s
16 * * 269 113s 0.02s
18 * * 315 | 1,278s 0.02s
20 * * * * 0.02s

Py and P; globally by ABC, a mature tool developed at
UC Berkeley [6]. The first pair of columns gives the results
of Bounded Model Checking [1] (the largest number of used
time frames and run time). The next pair of columns provides
results of PDR (i.e., IC3). Finally, we give the results of solving
Py and P; locally by our tool (see Section 7).

The results show that bounded model checking soon be-
comes impractical, as the number of time frames increases
exponentially. ABC’s PDR solves more cases, but to generate
a CEX, it has to consider a quickly increasing number of time
frames as well. For JA-verification, the size of the counter has
no influence on the run time. While the counter is a purely
synthetic example, in practice, one often has to find so-called
deep counterexamples. A system with complex inner state
might require a long sequence of steps to reach a buggy state.

5. HANDLING PROPERTIES EXPECTED TO FAIL

When proving properties P;, i = 1,...,k in JA-verification,
as introduced in Section 4, one excludes the traces where
a property P;, j # i fails before P; does. This is based on
the assumption that the properties that are the first to fail
indicate design behaviors that need to be fixed first. However,
this assumption is unreasonable when a property P; that fails
before P; is Expected To Fail (ETF). For instance, to ensure
that a state s is reachable, one may formulate an ETF property
P; where s is a Fj-state. In this case, excluding the traces
where P; fails before P; is a mistake.

One can easily extend JA-verification to handle ETF proper-
ties as follows. Suppose that our objective is to prove every
property P; that is Expected To Hold (ETH). In addition, for
every ETF property we want to find a CEX that does not break
any ETH property. Then, to solve P, i =1,...,k locally one
assumes that every ETH P;, j # i is true. Thus, we exclude the
traces where ETH properties fail before P;, even if the latter is
an ETF property.

6. Ic3 AND CLAUSE RE-USING

So far, we discussed the machinery of local proofs without
specifying the algorithm used to prove a property. In this
section, we describe an optimization technique applicable if
property checking is performed by Ic3 [3]. The essence of
this technique is to re-use strengthening clauses generated by
Ic3 for property P; to strengthen another property P;, j # i.

A. Brief description of 1C3

Let Q be a property of an (I,T)-system where I — Q. If Q
holds, there always exists a predicate F(S) such that QA F

is inductive with respect to T. Then (QAFAT) — (Q'AF'),
where a primed predicate symbol means that the predicate in
question depends on next state variables S’ (for instance, Q'
denotes Q(S')). The fact that Q A F is inductive implies that
QAF is an over-approximation of the set of states reachable
in the (I,T)- system in question. Therefore, for every state s
reachable in (I,T)-system, Q(s) AF(s) = 1.

In Ic3, formulas are represented in conjunctive normal
form and the predicate F is constructed as a set of clauses
(disjunctions of literals). Let Rch(I, T, j) denote the set of states
reachable from /-states in at most j transitions. To construct the
formula F, Ic3 builds a sequence of formulas Fy,...,F,, where
Fo=1and Fj,j=1,...,m specifies an over-approximation of
Rch(I, T, j). That is, if a state s is in Rch(I, T, j), then s satisfies
Fj, ie., Fj(s) =1. A formula F;, j > 0 is initialized with Q.
Then F; (and possibly some formulas F;, i < j) are strengthened
by adding so called inductive clauses. If Q A F; becomes
inductive for some value of i,i < j, property Q holds. Clause C
is called inductive relative to Fj if I — C and CAF; AT — C'
hold. In this case, every s € Rch(I,T,j) satisfies C and so
FjAC is still an over-approximation of Rch(I,T, j).

B. Re-using strengthening clauses

The idea of re-using strengthening clauses is based on the
following observation. Suppose that Fp is a set of clauses
which makes Q inductive in the (I,T)-system. This means
that Q A Fp is an over-approximation of the set of all states
reachable in the (Z,T)-system. Hence a state s € Rch(I,T, j)
satisfies Fp, for any value j > 0. Suppose one needs to prove
some other property R. Then, when constructing a formula
over-approximating Rch(I, T, j), one can initialize this formula
with R A Fp, rather than with R.

7. IMPLEMENTATION

We use a version of 13 developed in our research group.
We will refer to it as Ic3-db where “db” stands for Diffblue.
Ic3-db uses the front-end of EBMC [7]. We will refer to our
implementation of JA-verification based on Ic3-db as Ja-ver.
The latter is a Perl script that calls Ic3-db in a loop for proving
individual properties.

Let Py,..., P, be the set of properties to be proved. Proving
P; locally means showing that there is no initialized trace of P-
states that leads to a P;-state, where P is the aggregate property
Py A...AP;. To guarantee that all present states satisfy P, Ic3-db
adds constraints to the transition relation 7' that force P;, j #i
to be equal to 1. Adding constraints, in general, adversely
affects an important optimization technique of IC3 called state
lifting [4], [8]. For that reason, Ic3-db has an option to make
the state lifting procedure ignore constraints specified by P;j,
J # i. The interaction of state lifting and property constraints
in Ic3-db is described in more detail in a technical report [5].
This report also provides more information on how re-use of
strengthening clauses is implemented in Ic3-db.

8. EXPERIMENTAL RESULTS

In this section, we report experiments that show the via-
bility of our approach to multi-property verification. We use

TABLE II
Designs with failed properties. Many properties of 65258, 65207, 65254,
65335, and 65380 are false globally in joint verification but true locally in
JA-verification. ‘mem’ means running out of memory

name #latch| #pro Joint verification Ja-verification by Ic3-db
pert. ABC Ic3-db with clause re-use
#false #false time | #false total
(#true) | time| (#true)| time | limit | (#true) time
6s104| 84,925| 124 1(0) 10h| 1(0) mem| 03h | 1(123) 2.5h
65260 2,179 35 | 1(0) 10h | 1(0) 10h | 0.5h | 1(34) 1,686 s
65258 1,790 80 | 25(0) | 10h| 30(0) | 10h | 0.3h | 1(72) 2.4h
65175 7,415 3| 2(0) 10h | 2(0) 10h | 0.3h | 2(1) 5545
65207 3,012] 33 | 6(0) 10h| 10(0) | 10h | 0.3h | 2(31) 22s
65254 762 14 | 13(1) | 25s| 13(1) | 225s| 0.3h | 1(13) 2s
65335 1,658) 61 | 26(35)] 2h | 26(35)] 260s| 0.3h | 20(41) 56s
65380 5,606 897 | 399(0)| 10h| 395(0)] 10h | 0.3h | 3(894) 550s

benchmarks from the multi-property track of the Hwmcc-12
and 13 competitions We did two experiments, comparing joint
and JA-verification based on Ic3-db. For both experiments,
we picked eight designs to illustrate the point described in
the corresponding subsection. (More experimental data can be
found in [5].) We cross-check the results of Ic3-db in joint

verification with those reported by the latest version of ABC [6].

As we mentioned in Section 7, JA-verification is implemented
as a Perl script Ja-ver that calls Ic3-db to process individual
properties sequentially. In this paper, we do not exploit the
possibility to improve JA-verification by processing properties
in a particular order.! Properties are verified in the order they
are given in the design description.

Joint verification is also implemented as a Perl script called
Jnt-ver, where Ic3-db is called to verify the aggregate property
P:=P A...\P. If P fails, the individual properties refuted
by the generated CEX are reported false. Jnt-ver forms a new
aggregate property by conjoining the properties P; that are
unsolved yet and calls Ic3-db again. This continues until every
property is solved. As for ABC, joint verification is its natural
mode of operation. However, in contrast to Jnt-ver, ABC does
not re-start when a property is proved false and goes on with
solving the remaining properties.

In both experiments, the time limit for joint verification was
set to 10 hours. The time limit used by Ic3-db in JA-verification
to prove one property is indicated in Tables II, III and IV. If a
property of a benchmark was not solved by Ic3-db, the time
limit was added to the total time of solving this benchmark.

A. Designs with failing properties

In the first experiment, we picked eight designs with failing
properties to show that solving properties locally can be much
more efficient than globally. Thus, the sacrifice one makes by
looking only for the failed properties that form the debugging
set pays off. Unfortunately, the HWMCC competitions do
not identify properties of multi-property benchmarks that are
expected to fail, if any (see Section 5). For that reason, we
assumed that every property was expected to hold.

The results are given in Table II. The first column provides
the name of the benchmark. The second and third columns give

'A rule of thumb here is to verify easier properties first to accumulate
strengthening clauses and use them later for harder properties.

TABLE III
All properties are true

name #latch | #pro- Joint verification JA-verification by Ic3-db
pert. with clause re-use
time #un-

ABC Ic3-db limit | solved Ic3-db
6s124 6,748 630 >10h 29h | 0.8h 0 1.9h
63135 2,307 340 123s 335s | 0.8h 0 746
63139 16,230 120 4.7h 1.7h | 2.8h 2 6.5 h
65256 3,141 5 >10h 602s | 2.8h 1 29 h
bob12m09 285 85 1,692's 930s | 0.8h 0 784s
65407 11,379 371 1.3h 34h | 0.8h 0 2,077s
65273 15,544 42 1.8s 325s | 0.8h 0 290s
65275 3,196 673 334s | 1,154s | 0.8h 0 1,611s

the number of latches and properties, respectively. The next
two pairs of columns provide the results of joint verification
performed by ABC and Ic3-db. The first column of the pair
gives the number of false and true properties that ABC or Ic3-db
managed to solve within the time limit. The second column of
the pair reports the amount of time taken by ABC or Ic3-db.
The last three columns report data about JA-verification: the
time limit per property, the number of false and true properties
solved within the time limit, and the total time taken by Ic3-db.
In all tables, the run times that do not exceed one hour are
given in seconds.

For all examples but 65258, JA-verification solved all
properties locally. On the other hand, for many examples, in
joint verification, only a small fraction of properties were solved
by Ic3-db and ABC globally. Let us consider example 65207
in more detail. JA-verification solved all properties of 65207
fairly quickly generating the debugging set of two properties.
On the other hand, joint verification by Ic3-db proved that ten
properties failed globally within 10 hours. Since JA-verification
showed that only two properties failed locally, eight out of those
ten failed properties were true locally. Let P; be one of those
eight properties. The CEX found for P; by joint verification first
falsifies a property of the debugging set. Thus, we do not know
if there is a CEX where P; fails before other properties. JA-
verification does not determine whether P; fails but guarantees
that every CEX for P; (if any) first fails some other property.

B. Designs where all properties hold

In the second experiment, we used designs where all
properties were true. Recall that if all properties hold locally,
they all hold globally as well. Ideally, we would like to use
designs with as many properties as possible. However, for
such designs, joint verification is usually outperformed by JA-
verification since the presence of even a few hard properties
P; cripples its performance. This problem can be addressed by
partitioning Py,..., P, into smaller clusters of properties [9],
which is beyond the scope of this paper. Thus, we picked
eight designs that have less than a thousand properties and that
can be solved by joint verification without partitioning into
clusters. The point we are making is that separate verification
is competitive with joint verification even for the benchmarks
that favor the latter.

The results are given in Table III. The first three columns
are the same as in Table II. The next two columns give run

TABLE IV
Re-using strengthening clauses in JA-verification. Time limit per property is
the same as in Table III. Verification of 65124, 65139, and 65407 (without
clause re-use) was aborted after 10 hours

name #properties | without clause re-use with clause re-use
#unsolved time | #unsolved time
65124 630 505 10h 0 1.9h
65135 340 0 2.7h 0 7465
65139 120 116 10h 2 6.5h
65256 5 0 892s 1 2.9h
bob12m09 85 0 1.1h 0 784s
65407 317 270 10h 0 2,077s
65273 42 0 1,445 0 290s
65275 673 0 3,273s 0 1,611s

times of ABC and Ic3-db in joint verification. The last three
columns provide information about JA-verification: time limit
per property, number of unsolved properties and total run time.
The best of the run times obtained in joint verification and
JA-verification based on Ic3-db is given in bold. In three cases,
joint verification based on ABC was the fastest but we needed
a comparison that uses a uniform setup.

Table III shows that joint verification performed slightly
better. In particular, for benchmarks 65739 and 65256, JA-
verification failed to solve some properties with the time limit
of 2.8 hours. However, when we verified properties in an order
different from the one of design description, both benchmarks
were solved in time comparable with joint verification.

To illustrate the benefit of re-using strengthening clauses,
Table IV compares JA-verification with and without re-using
strengthening clauses on the examples of Table III. Table IV
shows that JA-verification with re-using strengthening clauses
significantly outperforms its counterpart. The only exception
is 65256 which has only five properties to check.

9. RELATED WORK

We found only a few references to research on multi-property
verification. In [10], some modifications of ABC are presented
that let it handle multi-property designs. In [9], [11], the idea
of grouping similar properties and solving them together is
introduced. The similarity of properties is decided based on
design structure (e.g., properties with similar cones of influence
are considered similar). The main difference of this approach
from ours is that the latter is purely semantic. Thus, the
optimizations of separate verification we consider (local proofs
and re-using strengthening clauses) can be incorporated in any
structure-aware approach. One further difference is that the idea
of grouping favors correct designs. Grouping may not work
well for designs with broken properties that fail for different
reasons and thus have vastly different CEXs.

Assume-guarantee reasoning is an important method for
compositional verification [12], [13]. It reduces verification of
the whole system to checking properties of its components
under some assumptions. To guarantee the correctness of
verification one needs to prove these assumptions true. As
we mentioned earlier, JA-verification uses yet-unproven prop-
erties as assumptions without subsequent justification. This
is achieved by our particular formulation of multi-property
verification. Instead of proving or refuting every property, JA-

verification builds a subset of failed properties that are the first
to break or proves that this subset is empty.

10. CONCLUSIONS

We consider the problem of verifying multiple properties
Pi,...,P. of the same design. We make a case for separate
verification where properties are proved one by one as opposed
to joint verification where the aggregate property P A... APy
is used. Our approach is purely semantic, i.e., we do not rely
on any structural features a design may or may not have.

We introduce a novel variant of separate verification called
JA-verification. JA-verification checks if P; holds locally, i.e.,
under the assumption that all other properties are true. We show
that if all properties hold locally, they also hold globally, i.e.,
without any assumptions. Instead of finding the set of all failed
properties, JA-verification identifies a “debugging” subset. The
properties in the debugging subset highlight design behaviors
that need to be fixed first, which can yield substantial time
savings in the design-verification cycle.

We experimentally compare conventional joint verification
and JA-verification. We give examples of designs with failed
properties where JA-verification dramatically outperforms its
counterpart, especially for designs where a small debugging set
D exists. For these designs, one needs to find only |D| CEXs
which are typically shallow. Computation of deeper CEXs for
false properties that are not in D is replaced with proving
them true locally. Re-using inductive invariants generated for
individual properties that are locally true significantly speeds
up JA-verification. In particular, for correct designs, it makes
JA-verification competitive with joint verification even for
benchmarks that favor the latter.

REFERENCES

[1] A. Biere, A. Cimatti, E. Clarke, M. Fujita, and Y. Zhu, “Symbolic model
checking using SAT procedures instead of BDDs,” in DAC, 1999, pp.
317-320.

[2] K. L. Mcmillan, “Interpolation and SAT-based model checking,” in CAV.
Springer, 2003, pp. 1-13.

[3] A. Bradley, “SAT-based model checking without unrolling,” in VMCAI,
2011, pp. 70-87.

[4] N. Eén, A. Mishchenko, and R. Brayton, “Efficient implementation of
property directed reachability,” in FMCAD, 2011.

[5] E. Goldberg, M. Giidemann, D. Kroening, and R. Mukherjee, “Efficient
verification of multi-property designs (the benefit of wrong assumptions)
(extended version),” Tech. Rep. arXiv:1711.05698 [cs.LO], 2017.

[6] B. L. Synthesis and V. Group, “ABC: A system for sequential synthesis
and verification,” 2017, http://www.eecs.berkeley.edu/~alanmi/abc.

[7]1 R. Mukherjee, D. Kroening, and T. Melham, “Hardware verification
using software analyzers,” in IEEE Computer Society Annual Symposium
on VLSI. IEEE, 2015, pp. 7-12.

[8] H. Chockler, A. Ivrii, A. Matsliah, S. Moran, and Z. Nevo, “Incremental
formal verification of hardware,” in FMCAD, 2011.

[9] G. Cabodi and S. Nocco, “Optimized model checking of multiple

properties,” in DATE, 2011.

Http://people.eecs.berkeley.edu/~alanmi/presentations/

updating_engines00.ppt.

P. Camurati, D. P. C. Loiacono, P. Pasini, and S. Quer, “To split or to

group: from divide-and-conquer to sub-task sharing in verifying multiple

properties,” in DIFTS, 2014.

C. Jones, “Specification and design of (parallel) programs,” in IFIP 9th

World Congress, 1983, pp. 321-332.

A. Pnueli, “In transition from global to modular temporal reasoning

about programs,” in Logic and Models of Conc. Sys., vol. 13, 1984, pp.

123-144.

[10]

[11]

[12]

[13]

