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Abstract

Predicate abstraction is a major method for verification
of ANSI-C programs. However, the generation of the ab-
stract Boolean program from the set of predicates and the
original program suffers from an exponential number of the-
orem prover calls as well as from soundness issues. This pa-
per outlines an on-going project that uses an efficient SAT
solver for generating the abstract transition relation of C
programs. The SAT-based approach computes a more pre-
cise and safe abstraction compared to the existing predicate
abstraction techniques.

1 Introduction

It is widely believed that effective model checking [5]
of software systems could produce major enhancements in
software reliability and robustness. However, the effective-
ness of model checking of software systems is severely con-
strained by the state space explosion problem. One principal
method in state space reduction of software systems is ab-
straction. Abstraction techniques reduce the program state
space by mapping the set of states of the actual system to
an abstract set of states that preserve the actual behaviors of
the system. Abstractions are most often performed in an in-
formal, manual manner, and require considerable expertise.

Predicate abstraction [19, 9, 1], is one of the most pop-
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Figure 1. The CEGAR Framework

ular and widely applied methods for systematic abstraction
of programs. It abstracts data by only keeping track of cer-
tain predicates over the data variables. Each predicate is
represented by a Boolean variable in the abstract program,
while the original data variables are eliminated. The ab-
stract program is created usingExistential Abstraction[7],
resulting in an over-approximation of the set of behaviors
of the original program. When Model Checking of the ab-
stract program fails it may produce a counterexample that
does not correspond to a concrete counterexample; this is
called aspurious counterexample. Consequently, the set of
predicates is refined heuristically, and a new abstraction is
computed.

The abstraction refinement process has been automated
by the Counterexample Guided Abstraction Refinement
paradigm [15, 6, 11], or CEGAR for short. This framework
is shown in Figure 1: one starts with a coarse abstraction,
and if it is found that an error-trace reported by the model
checker is not realistic, the error trace is used to automati-
cally refine the abstract program, and the process proceeds
until no spurious error traces can be found.

Related Work. Data abstraction techniques are widely
used and they have been explored by a number of re-
searchers [7, 15, 17, 14]. Abstraction techniques are often
based on abstract interpretation [10] and require the user
to give an abstraction function relating concrete data-types



to abstract data-types. Earlier applications of the predi-
cate abstraction type of the abstract interpretation approach
[19, 3, 9] were dependent on the user identifying the set of
predicates that influence the verification property and were
utilizing general-purpose theorem proving to compute the
abstract program. The user-driven discovery of relevant
predicates makes them less effective for large programs.

Recently, various decision procedures have been pro-
posed to compute the set of predicates for the abstraction.
The most common approach is to use error traces [6, 1]
to guide the discovery of predicates. In [6], the algorithm
is based on BDD representations of the program. This is
a draw back for large programs, where transition relation
BDDs are commonly too large for efficient manipulation.
The algorithm from [1] uses an explicit state space repre-
sentation but it is restricted to safety properties.

In previous work, including [2, 13], the generation of the
abstract Boolean program from the C program and the set
of predicates suffers from multiple problems:

� The generation of the Boolean program is done by call-
ing a theorem prover for each potential assignment to
the current and next state predicates. For the most
precise transition relation, this requires an exponential
number of calls of the theorem prover. Several heuris-
tics are used to reduce this number. Existing tools stop
the computation after a user-specified number of calls,
and add all remaining transitions for which the theo-
rem prover call was skipped. This is a safe over ap-
proximation, but will yield a potentially large number
of unnecessary spurious counterexamples.

� Existing tools - with the exception of [4] - use general-
purpose theorem provers. Program variables are mod-
eled as unbounded integer values, neglecting a possible
arithmetic overflow in the ANSI-C program. This can
result in false positive answers of the tool.

� Existing tools only support a very limited range
of operators, namely Boolean operators, addi-
tion/subtraction, equality, and relational operators.
Other ANSI-C operators, such as multiplication and
division, bitwise operators, type conversion operators,
and shift operators are modeled by means of uninter-
preted functions. This limits the set of programs and
the properties that can be verified.

� Existing tools only provide a limited support for
pointer operations. In particular, pointer arithmetic is
not handled.

Contribution. This work proposes to use a SAT solver
to generate the abstract program. The goal of the SAT solver
application is to replace the potentially exponential number
of theorem prover calls by a single SAT instance.

For each basic block in the given program, our approach
is to first construct a symbolic representation of the con-
crete (non-abstracted) transition relation by applying sym-
bolic simulation techniques. Next, we add the predicates in
current and next state form to the relation between variables,
resulting in a Boolean formula. Finally, we enumerate sym-
bolically on the values of the predicates, using a SAT solver.
When the abstract program needs to be refined, we use the
same formula that we have already created, together with
the new set of predicates, to create the new abstraction.

The advantage of this technique is that the exponen-
tial number of theorem prover calls is eliminated; instead,
the possible assignments to the values of the predicates are
searched by the SAT solver. Modern SAT solvers are very
efficient, and allow a large number of variables, enabling us
to discover many more possible assignments. Thus, one ob-
tains a more precise abstract transition relation, eliminating
redundant spurious counter examples.

Another advantage of our approach is that all the ANSI-C
constructs can be encoded using CNF, which allows a wider
range of programs. Integer operators are encoded using bit
vector operators, i.e., they take the potential arithmetic over-
flow into account. Thus, there are no false positive answers
due to the inaccurate assumption that the range of values
of the variables is infinite. Moreover, pointer manipulation
constructs, including pointer arithmetic, can also be sup-
ported. The only limitation is that recursion and dynamic
memory allocation are not allowed. This limitation cannot
be avoided, since the Boolean program is required to be fi-
nite. The symbolic simulation technique we propose to use
is taken from [8].

2 A Boolean equation for the Concrete Tran-
sition Relation

The concrete transition relation is represented by a
Boolean equation that captures the semantics of the pro-
gram. At this point we only translate basic blocks, which
are program segments that contain only sequentially com-
posed assignments. The control flow of the program is left
intact, and will be handled later.

Assume a given basic block. At this point we have al-
ready performed a pre-processing step that eliminates func-
tion calls. The first step is to transform the block into single
assignment form, so that a variable is not assigned twice
within the same block. Let the program refer to variablev
at a given program location. Letα denote the number of
assignments made to variablev prior to the location. The
variablev is then renamedvα. Within assignments tov, the
expression on the right hand side is considered to be before
the assignment. The variable that is assigned to on left the
hand side is considered to be after the assignment. Lete
denote an expression, thenρ(e) denotes the expression after



renaming. Following is an example of a simple block and
its translation:

x = z*x;
y = x + 1;
x = x + y;

ρ
�!

x1 = z*x0;
y1 = x1 + 1;
x2 = x1 + y1;

For variables that are not assigned into, the final value is
the version with index 1, and we will make sure thatv0 = v1.
We usev0 as a shorthand for the largest index used forv
(the final value), whilev is a shorthand for the initial value
v0. Thus, the transition relation we are defining is a relation
T(v;v0), wherev is the vector of program variables. In the
following, we usev for a program variable (such asx in the
example above) andvj for one of its renamed versions (x0,
x1, x2 in that example).

We now generate an equationeq(vj) for each (renamed)
variable with j > 0, describing what happens tovj after ex-
ecuting this code. The equations are created using the fol-
lowing rules:
Case 1If v is not assigned to in the block we define

eq(v1) ::= (v1 = v0)

Case 2For a simple variablev, i.e., not of an array or struc-
ture type, and an assignmentv j= exp , we have

eq(vj) ::= (vj = exp)

Note thatv j= exp is the assignment after the translation
into single assignment form, thus all the variables inexpare
already renamed.
Case 3If v is an array, leta be the array index, i.e., the
assignment isvj [a] = exp. In this case we create an equation
that states that the value ofvj , at indexi is equal toexp if
i = a and equal tovj�1[i] otherwise:

eq(vj) ::=
^

i

(vj [i] = ((i = a)?exp: vj�1[i]))

The “?” operator is a Boolean choice operator. The expres-
sion x?a : b evaluates toa if x = 1 and tob if x = 0. This
form is more efficient, in terms of the number of clauses
generated, than the equivalent formula using only the ba-
sic Boolean operators. Assignments to variables that have a
struct type are handled in a similar manner.
Case 4When an array is used on the right hand side of the
assignment we use a case split on the array index to refer-
ence it. For example, the assignmentvj = vi [a] generates
the formula:

eq(vj) ::=
^

k

((k= a)! (vj = vi [k]))

Case 5When an address is assigned to a pointer variable we
treat it as any simple assignment. The address of a variable

is a value that we can compute at compile time. For the
assignmentpj = &x we have:

eq(pj) ::= (pj = &x)

Case 6When a pointer is dereferenced we use a case split on
all the variables that match the type of the pointer. Letp be
a pointer variable, andVp be the set of variables to whichp
can point. The assignmentvj = �p results in the following:

eq(vj) ::=
^

x2Vp

(p= &x)! vj = x

This equation can be simplified if the predicates we are
about to use for the abstraction include information about
the possible variables inVp. However, at this point we give
the general solution that does not rely on the set of predi-
cates.
Case 7The case where a pointer dereference appears on the
left hand side of an assignment is handled by a transforma-
tion of the program rather than an equation. The assignment
*p = exp is capable of affecting any of the variables in
Vp. We therefore replace this assignment with a series of as-
signments – for each variablev2Vp we add the assignment

v = (p=&v) ? exp : v

This transformation of the program is donebeforethe re-
naming step. The renamed program does not have pointer
dereferences on the left hand side of assignments, and
can be translated into an equation system using the previ-
ous rules. For example, assuming that the variablep can
point to bothx andy, the following transformation occurs:

x = 5;
*p = y + x;
x = x + 1;

!

x1 = 5;
x2 = (p==&x) ? (y0+x1) : x1;
y1 = (p==&y) ? (y0+x2) : y0;
x3 = x2 + 1;

Putting together the equations for all variables we get a
bit-vector equation such that each solution represents a pos-
sible computation of the basic block. We note again that our
tool has support forall bit-vector operations, and the imple-
mentation is sound because it takes into account overflow
situations. We show an example of the process described
above in Figure 2. The example gives a basic block, the
renamed version, and the resulting equation system.

3 Computing the Abstraction

Let P be the set of predicates, where each predicate is
an expression over the (concrete) program variables. Each
predicatepi 2P is associated with a Boolean variablebi that
represents its truth value. These Boolean variables are the
variables of the Boolean program we are constructing. Let
p denote the vector of predicates, andb denote the vector
of the Boolean variables. The predicates map a concrete



x = 5;
y = *p + 1;
*p = 2*y;

�!

x1 = 5;
y1 = *p 0 + 1;
x2 = (p 0==&x) ? 2* y1 :
x1;
y2 = (p 0==&y) ? 2* y1 :
y1;

�!

x1 = 5^

y1 = ((p0 = &x)?x1 : y0)+1^

x2 = (p0 = &x)?2�y1 : x1

y2 = (p0 = &y)?2�y1 : y1

p1 = p0

Figure 2. Example: Generation of the concrete transition relation

statev into an abstract stateb, and thusp(v) is also called
the abstraction function. GivenT(v;v0) and P, we create
an abstract transition relationB(b;b

0
) that is an existential

abstraction of the C program.
Our goal is to replace a basic block with an expression

that describes what happens to the variablesb when this ba-
sic block is executed. We present a translation that is ac-
curate, i.e., it gives the transition relation as defined by ex-
istential abstraction, and not an over-approximation of it as
other tools use.

Let T(v;v0) denote the concrete transition relation, as de-
fined in the previous section. The abstract transition relation
B(b;b

0
) relates a current stateb (before the execution of the

basic block) to a next stateb
0
(after the execution of the ba-

sic block). It is defined usingp as follows:

Γ(b;b0;v;v0) 4
= (p(v) = b)^T(v;v0)^ (p(v0) = b

0
) (1)

B(b;b
0
) () 9v;v0 : Γ(b;b0;v;v0) (2)

The concrete transition relationT(v;v0) is given as a bit
vector equation, as described in the previous section. In or-
der to obtainB(b;b

0
), we translateΓ(b;b0;v;v0) into CNF.

Every satisfying assignment toΓ(b;b0;v;v0) represents a
concrete transition and its corresponding abstract transition.
We aim at obtaining all possible satisfying assignments to
the abstract variablesb andb

0
, i.e., the set

f(b;b
0
) j B(b;b

0
)g (3)

This set is obtained by modifying the SAT solver Chaff
as follows: Every time a satisfying assignment is found, the
tool records the values of the literals corresponding to the
abstract variablesb andb

0
, and then adds ablocking clause

in terms of these literals that eliminates all satisfying as-
signments where these variables have the newly found val-
ues. The literals in the blocking clauses all have a deci-
sion level, since the assignment is complete. The solver
then backtracks to the highest of these decision levels and
continues its search for further, different satisfying assign-
ments. Thus, the SAT solver is used to enumerate the set
(3). This technique is commonly used in other areas, for
example in [18, 12]. In [16], the same algorithm we are
using is used to enumerate symbolic solutions to predicate

abstraction formulas. On the SLAM benchmarks, it outper-
forms BDDs in most cases. However, the work does not use
bit-vector logic.

As an example, consider the following basic block:

d=e;
e++;

Suppose the predicatesp1 = d&1 and p2 = e&1 are
given. The operator & is the bitwise conjunction operator,
i.e., p1 holds if and only ifd is odd, andp2 holds if and only
if e is odd. The basic block is translated into the following
transition relation:

(d1 = e0) ^ (e1 = e0+1) (4)

By adding the constraints for the predicates we get:

(b1 = d0&1) ^ (b2 = e0&1)^

(d1 = e0) ^ (e1 = e0+1)^ (5)

(b01 = a1&1) ^ (b02 = e1&1)

The satisfying assignments for this equation over the
variablesb1 andb2 are:

b1 b2 b0

1 b0

2

1 0 0 1
0 1 1 0

In particular, the abstract Boolean program will never make
a transition that is contradictory in the sense that bothe and
e+1 are odd. This is unavoidable if a next state function is
computed separately for each Boolean variable inb, as done
by many existing tools.

Consider the basic block above with the predicatesp1 =
e� 0 andp2 = e� 100, and suppose thate has 32 bits. The
equation for the abstract transition relationB is:

b1 = e0 � 0^b2 = e0 � 100^

d1 = e0^e1 = e0+1 (6)

b01 = e1 � 0^b02 = e1 � 100

The satisfying assignments for this equation over the
variablesb1 andb2 are:



b1 b2 b0

1 b0

2

0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 1 0
1 1 1 1

Note that incrementing a positive number is not guaran-
teed to yield another positive number because of the finite
range (there is a transition from a state withb1 = 1 to a state
with b01 = 0).

Besides basic blocks, the concrete program also contains
control flow statements such asif andwhile . These state-
ments take a condition as an argument, and change the value
of the program counter accordingly. To compute the corre-
sponding abstract transitions we can use the SAT solver in a
similar way to what was done for basic blocks. In practice,
however, this is rarely necessary, since the conditions of the
if andwhile loops are often chosen as one of the Boolean
predicates. In this situation no translation is needed.

4 Conclusion

The paper describes a new method to compute the
Boolean abstraction of an ANSI–C program using SAT. It
overcomes the limitations of existing tools, which over-
approximate and provide support for only few operators.
A full implementation of this technique is currently under-
way.
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