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Abstract. The precondition for an assertion within a procedure is use-
ful for understanding, verifying and debugging programs. As the proce-
dure might be used in multiple calling-contexts within the program, the
precondition should be sufficiently precise to enable re-use. We present
an extension of counterexample-guided abstraction refinement (CEGAR)
for automated precondition inference. Starting with an overapproxima-
tion of both the set of safe and unsafe states, we iteratively refine them
until they become disjoint. The resulting precondition is then neces-
sary and sufficient for the validity of the assertion, which prevents false
alarms. We have implemented our approach and present experimental
results using string and array-manipulating programs.

1 Introduction

Software model checking is a popular technique for program verification. A di-
verse range of tools based on this approach have been developed (e.g., SLAM [1],
BLAST [19], MAGIC [7], SATABS [8] and TERMINATOR [11]) and suc-
cessfully applied to real-world software. The key to effectiveness of these tools
is abstraction, and predicate abstraction [16] is a well-established instance. The
predicate discovery in tools implementing it is driven by counterexample-guided
abstraction refinement [9], commonly known as CEGAR.

Most of the tools above answer the usual verification question: “given an
assertion at some program location, is this assertion always valid?” When con-
sidering just a fragment of a program containing an assertion, we can ask a
slightly different question: “In which context is the assertion valid?” The code
fragment might be a procedure that is called at different program locations,
hence the computed context should be as general as possible to be reusable at
the different call sites. A simple and straightforward way to infer a precondition
is to compute a conservative abstraction of the set of unsafe states, i.e., those
states that can reach an error, and using its complement as precondition. The
problem with this approach is that an over-approximation of the set of unsafe
states might include safe states as well, resulting in an over-conservative pre-
condition. The abstraction must then be refined by removing some of the safe
states. This cannot be performed in an enumerative fashion, as the set of safe
states is often infinite.
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STREP PINCETTE and the ARTEMIS VETESS project.
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We propose a solution to the problem based on the abstraction (and thus
generalization) of both the set of safe and unsafe states. Our approach is based
on the CEGAR paradigm: starting with an over-approximation of both sets,
we iteratively refine them until they become disjoint. Thus, the resulting pre-
condition is sufficient and also necessary for the validity of the assertion. This
guarantees the absence of false alarms, as the violation of the precondition by
some calling context entails the violation of the assertion within the procedure.
Our contributions are summarized as follows:

– A novel approach to generate exact preconditions, i.e., necessary and suffi-
cient. Thus, the precondition is independent from the calling context. Most
of the approaches in the literature generate preconditions that are only suffi-
cient, thus the precondition often has to be re-adjusted if it is not satisfied by
some calling context. In our case, a violation of the precondition will result
in a real error, and we thus avoid false alarms.

– An implementation of the approach using ingredients that are common to
most CEGAR-based verification tools. Thus, our technique represents a
generic scheme for extending other tools to infer preconditions.

– A simple predicate inference mechanism for algorithms that manipulate ar-
rays used on the top of the standard predicate refinement procedure. This
simple technique generates predicates that are often adequate to obtain the
right program invariant and subsequently obtain the desired precondition.

The remainder of this paper is organized as follows: Section 2 illustrates our
approach by means of examples. Section 3 introduces background material. Sec-
tion 4 describes our approach for precondition inference and the refinement tech-
nique used in the CEGAR loop. Section 5 presents experimental results and
Section 6 discusses related work.

2 Examples

Consider the program copy given in Figure 1(a). It takes as parameters two
arrays a and b and the length b l of array b. The program copies the elements of
array b in the range {0, . . . , b l − 1} to the corresponding range in array a. The
access to array a is safe if the index expression is in the range {0, . . . , a l − 1},
where a l is the length of array a. It is trivial to see that the lower bound is
not violated. Let us then focus on the upper bound. The safety condition with
regards to the upper bound is expressed by the assertion at location `2. Our goal
is to find a precondition for procedure copy that guarantees that this assertion is
never violated. The precondition must be expressed only using program elements
visible at the entry-point of the procedure, i.e., it must be a predicate over the
procedure parameters and the global variables. The precondition should also be
exact, i.e., it should neither be too strong nor too weak.

Transformation to reachability We will now illustrate our approach to precondi-
tion inference approach. We use standard notation and formally represent pro-
grams in terms of transition constraints over primed and unprimed program
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void copy(int a[], int b [], int b l)
{

int i ;
`0 : i = 0;
`1 : while(i < b l)
{

`2 : assert(i < a l );
a[ i ] = b[i ];
i++;

}
}

void copy 2(int a [], int b [])
{

int i ;
`0 : i = 0;
`1 : while(b[i] != 0)
{

`2 : assert(i < a l );
a[ i ] = b[i ];
i++;

}
}

(a) (b)

Fig. 1. Two simple programs that copy a range of elements from array b to array a. In
procedure copy, the limit of the range to be copied is explicitly given via b l. In copy 2,
the range is implicitly delimited via the sentinel value 0.

variables. The set of transition constraints corresponding to program copy (Fig-
ure 1(a)) is given in Figure 2(a) and the associated control flow graph is given
in Figure 2(b). The program counter is modeled explicitly using the variable
pc, which ranges over the set of control locations. The assertion in the original
program is replaced with a conditional branch whose condition is the negation
of the assertion and whose target is the error location `E . The special location
`F is the final location, and has no successor.

Observe that the error location is only reachable if i ≥ a l evaluates to true
at location `2. The final location `F is reached in paths without error. The
transition τ0 corresponds to the initialization of variable i. The transition τ1
represents the entrance to the loop and τ2 the exit from the loop. The assertion
is modeled via the transition τ3, which conditionally alters the control flow to
the error location. Finally, the transition τ4 models the remainder of the loop
body after the assert statement. Arrays a and b are represented by uninterpreted
function symbols, and a[x := e] denotes function update (the expression is equal
to a where the xth element has been replaced by e).

Over-approximating the unsafe states It is in general not possible to enumerate
all the traces of a program. In our example, the program contains a cycle 〈τ1; τ4〉
(Figure 2(b)) that can be unfolded an indefinite number of times, leading to
an infinite number of traces. A solution to this problem is to provide a back-
wards inductive invariant : an invariant that includes all error states and which
is inductive under the application of wp1. Predicate abstraction [16] is a suit-

1 wp(τ, ϕ) is the weakest precondition for the formula ϕ with respect to statement
(transition constraint) τ . It extends to a sequence of statements (trace) π.
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τ0 : pc = `0 ∧ i′ = 0 ∧ pc′ = `1
τ1 : pc = `1 ∧ i < b l ∧ i′ = i ∧ pc′ = `2
τ2 : pc = `1 ∧ i ≥ b l ∧ i′ = i ∧ pc′ = `F
τ3 : pc = `2 ∧ i ≥ a l ∧ i′ = i ∧ pc′ = `E
τ4 : pc = `2 ∧ i < a l ∧ a′ = a[i := b(i)]

∧i′ = i+ 1 ∧ pc′ = `1

`0

`1

`F

τ2

`2

`E

τ3

τ1

τ0
τ4

(a) (b)

Fig. 2. Transition constraints for program copy (a) and the corresponding graphical
representation (b) or the control flow graph

able technique for building such an invariant. The key challenge when applying
predicate abstraction is the choice of predicates.

Naive approaches for inferring predicates, e.g., based on weakest precon-
ditions, often diverge [21]. In our example, suppose that we first obtain the
error path τ0; τ1; τ3 from the abstract model. The analysis of this path via
wp, i.e., wp(τ0; τ1; τ3, pc = `E), gives us the formula 0 < b l ∧ 0 ≥ a l. We
add the predicates 0 < b l and 0 ≥ a l and set the precondition ϕ to be
0 ≥ b l ∨ 0 < a l. If we unfold the loop once more we obtain the error trace
τ0; τ1; τ4; τ1; τ3. We have wp(τ0; τ1; τ4; τ1; τ3, pc = `E) ≡ 1 < b l ∧ 1 ≥ a l.
This new trace is not covered by the previous one, as it is still feasible un-
der our precondition ϕ. We then update ϕ to rule out the new trace to obtain
(0 ≥ b l ∨ 0 < a l) ∧ (1 ≥ b l ∨ 1 < a l). After unfolding the loop j times, we
obtain wp(τ0; 〈τ1; τ4〉j ; τ1; τ3, pc = `E) ≡ j < b l ∧ j ≥ a l and the precondition

ϕ ≡
∧
j>0

j ≥ b l ∨ j < a l .

We can continue to unfold the loop, every time generating a new trace that
is not covered by the previous ones. To address this divergence, we go beyond
the syntactic approach to predicate discovery and use techniques to infer more
general facts. For example, by linearly combining the predicates 0 < b l and
0 ≥ a l (from the first iteration) we deduce a l < b l. This new predicate is a
backwards invariant at location `0 with respect to the program, i.e.,

(
∨
j>0

wp(πj , pc = `E)) ⇒ (pc = `0 ⇒ a l < b l) .

Thus, the predicate a l < b l over-approximates the set of states that reach the
error location. The precondition ϕ is then simply chosen to be a l ≥ b l, i.e., the
complement of that set.
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Over-approximating the safe states When over-approximating the set of states
that reach the error location, we always include all error states but may include
some safe entry states as well. It means that the precondition, which is the com-
plement of the computed set, may exclude safe traces and is thus unnecessarily
strong. To tune the precision of the abstracted set of error states, our new algo-
rithm also over-approximates the set of entry states that reach the final location
`F (the safe states). We then check the intersection of this set with the (over-
approximation of the) states that reach the error location. If the intersection is
empty, we conclude that our current set of unsafe states does not include any
safe state.

As we did for the error location, we obtain the over-approximation of the set
of states reaching the final location given as the state formula a l ≥ b l∨0 ≥ b l.
The intersection of this set with the set of unsafe states (a l < b l) is obtained
by forming the conjunction:

(a l ≥ b l ∨ 0 ≥ b l) ∧ (a l < b l)

The formula above has satisfying assignments, which means that the two sets
are not disjoint. As a l ≥ b l and a l < b l are inconsistent, the intersection can
only be in 0 ≥ b l. Thus, from 0 ≥ b l we can reach both the error and final
location. This outcome is caused by insufficient precision of the abstraction. Let
us consider two traces, πE = τ0; τ1; τ3 leading to the error location, and πF =
τ0; τ2 leading to the final location. We have wp(πE , pc = `E) ≡ 0 < b l ∧ 0 ≥ a l
and wp(πF , pc = `F ) ≡ 0 ≥ b l. Thus, πE is not feasible from states with 0 ≥ b l,
which means that the set of unsafe states is not precise enough. It is then refined
by adding the predicate b l > 0, which makes the two sets disjoint. The final
precondition ϕ is given by

0 ≥ b l ∨ a l ≥ b l .

The precondition ϕ is now necessary and sufficient, meaning that is does not
allow any state to reach the error location and does not exclude any state that
reaches the final location.

Inferring quantified preconditions Let us consider a slightly modified version
of the previous program copy, which is given in Figure 1(b). In this example,
the range of elements to be copied from array b to a is not explicit, as it is
indicated via a sentinel value (0 in the example). After going through the different
steps described for the previous example, our method succeeds in inferring the
precondition

(b[0] = 0) ∨ (∃x ∈ {0, . . . , a l}. b[x] = 0) .

Observe that the precondition inferred by the algorithm is not equivalent to
∃x ∈ {0, . . . , a l}. b[x] = 0; it is weaker. This is due the possibility of skipping
the loop when b[i] 6= 0 is false, regardless of the value of a l. This implies that runs
from states in which b[0] = 0 are safe. This case is expressed via the first disjunct
of the precondition above. We will re-visit the second example in Section 4 to
illustrate our refinement procedure.
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3 Preliminaries

In this section, we provide background on counterexample-guided abstraction
refinement for predicate abstractions.

Program To aid the formal presentation, we assume that a program is given as
set T C of transition constraints τ . A transition constraint τ is a formula of the
form

g(X) ∧ x′1 = e1(X) ∧ . . . ∧ x′n = en(X) (1)

where X = 〈x1, . . . , xn〉 is a tuple (vector) of program variables, which include
the program counter pc. In (1), unprimed variables refer to the program state be-
fore performing the transition and primed ones represent the program state after
performing the transition. Formula g(X) is called the guard and the remaining
conjuncts of τ are the update or assignment.

Representing states symbolically Let us write V = {x1, . . . , xn} for the set of
variables of the program (including the program counter pc). For a variable
x ∈ V, Type(x) is the type (range) of x and σ(x) is a valuation of x such that
σ(x) ∈ Type(x). The variable pc ranges over the set of all program locations.
Given X (a tuple of the variables), a program state is the valuation σ(X) =
〈σ(x1), . . . , σ(xn)〉.

A set of program states S is represented symbolically by means of the char-
acteristic function of S. The formula ϕ represents the set of all those states that
correspond to a satisfying assignment of ϕ, i.e., {σ(X) |ϕ(X)}. We will use sets
and their characteristic functions interchangeably. Symbolic states (formulas)
are partially ordered via the implication operator⇒, i.e., ϕ′ ≤ ϕ means ϕ′ ⇒ ϕ.

State transformer For a formula ϕ, the application of the operator pre with
respect to the transition constraint τ returns a formula representing the set of
all predecessor states of ϕ under the transition constraint τ , formally

pre(τ, ϕ(X)) ≡ g(X) ∧ ϕ[〈e1(X), . . . , en(X)〉/X] .2

For the whole program T C, pre is given by

pre(ϕ(X)) ≡
∨
τ∈T C

pre(τ, ϕ(X)) .

For a trace π = τ1; . . . ; τn, we have

pre(τ1; . . . ; τn, ϕ) = pre(τ1, . . . pre(τn−1, pre(τn, ϕ))) .

If pre(π, ϕ) is not equivalent to false, then the trace π is feasible.

2 The notation f [Y/X] represents the expression obtained by replacing all occurrences
of every variable from the vector X in f with the corresponding variable from Y . It
naturally extends to a collection (set or list) of expressions.
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(Un)Safe states To ease presentation, let us assume that the program contains
a single error location `E and a single final location `F (`E 6= `F ).3 We denote
by bad the set of error states, which is simply given by pc = `E . Similarly, we
call final the set of final states, which is represented by pc = `F .

The set of safe states safe contains all states from which a final state is
reachable. Formally,

safe ≡ lfp(pre, final) (2)

where lfp(pre, ϕ) denotes the least fixpoint of the operator pre above ϕ. Similarly,
unsafe is the set of all states from which an error (bad) state is reachable:

unsafe ≡ lfp(pre, bad) . (3)

The least fixpoints represent inductive backwards invariants, which we denote
by ψbad and ψfinal, respectively. The invariants are inductive under pre, i.e.,

– bad ≤ ψbad and final ≤ ψfinal

– pre(ψbad) ≤ ψbad and pre(ψfinal) ≤ ψfinal

In the absence of non-determinism in the program, the sets of unsafe and safe
states are disjoint, and we have

unsafe ∧ safe ≡ false .

Predicate abstraction Predicate abstraction consists of approximating a state
ϕ with a formula ϕ′ constructed as a Boolean combination of predicates taken
from a set P . Here, the term approximation means that any model that satisfies
ϕ must satisfy ϕ′. Thus, a suitable approximation is obtained via the logical
implication “⇒”, i.e., ϕ′ is the strongest Boolean combination built up from
predicates taken from the finite set P such that ϕ⇒ ϕ′.

Defining the abstraction function α as being the strongest Boolean combi-
nation of predicates in P is not practical because of the exponential complexity
of the problem. Therefore, we use a lightweight version of α that consists of
building the strongest conjunction of predicates in P :

α(ϕ) ≡
∧
p | p ∈ P ∧ ϕ⇒ p .

Let us have D] the domain of formulas built up from the finite set of predi-
cates P . The domain D] is not closed under pre, therefore, we define pre] under
which D] is closed. Let us associate the concretization function γ : D] → D to α,
we simply choose γ to be the identity function. Functions α and γ form a Galois
connection with respect to ≥ (⇐) being the partial order relation for both D
and D]. Formally speaking

∀x ∈ D ∀y ∈ D]. α(x) ≥ y ⇔ x ≥ γ(y) .

3 In case of multiple assertions, we add an edge from each assertion (guarded with
the negation of the assertion) to `E . Similar treatment can be applied in the case of
multiple return locations.
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Hence, we define pre] : D] → D], the abstract version of pre, as follows:

pre](ϕ) ≡ α(pre(γ(ϕ))) ,

and thus

pre](τ, ϕ) = α(pre(τ, ϕ)) =
∧
p | p ∈ P ∧ pre(τ, ϕ)⇒ p .

As seen for pre, the operator pre] also extends to traces. Later on in this paper,
whenever we write pre]P we mean that the abstraction (image) is computed by
considering predicates from the set P .

The lattice of abstract states (L,⇒) is finite as the set of predicates is finite.
Therefore, lfp(pre], bad) (lfp(pre], final)), the least fixpoint for pre] above bad
(final) in L, is computable.

4 Precondition Inference

The precondition inference problem can be described as the computation of a
formula ϕ such that:

lfp(pre, bad) ∧ ϕ ≡ false (4)

The fixpoint for the preimage-operator pre is in general not computable, we thus
compute the least fixpoint for pre]. As we have lfp(pre, bad) ≤ lfp(pre], bad), it is
sufficient to show that

lfp(pre], bad) ∧ ϕ ≡ false

to conclude the validity of (4). The precondition ϕ can then be simply chosen as
the negation of lfp(pre], bad) projected on the entry location. One problem with
this approach is that due to the abstraction we may exclude some of the safe,
terminating runs. A second challenge is the choice of predicates. We have seen in
the example above that a bad choice of predicates can lead to divergence. In what
follows, we present a new CEGAR-based algorithm for precondition inference
that guarantees that all safe executions are included in the precondition. We
also propose a predicate discovery mechanism that goes beyond the approach
based on weakest preconditions.

4.1 Counterexample-guided precondition inference

Our goal is to increase the precision of the set of unsafe states unsafe], making
it free of safe states. This is non-trivial, since we cannot enumerate safe states,
as there are in general infinitely many. Hence, we need to construct the set of
safe states by over-approximating them as well. Our idea consists of building
abstractions of increasing precision of both the set of safe and unsafe states until
they become disjoint. We propose an implementation of this idea by extending
the classical CEGAR paradigm, where its main ingredients are instantiated in
our setting with the following:
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(a) (b) (c)

Fig. 3. Illustration of the main phases of algorithm InferPrecond. Dashed arrows indi-
cate that the trace is spurious.

– Abstraction: we abstract both the set of safe and unsafe states.
– Counterexample: in our context, a counterexample is two abstract traces,

a safe one and an unsafe one, beginning with a common initial state.
– Counterexample simulation: checks if the two traces can be concretized

to effectively share a common concrete initial state. This is only possible in
the presence of non-determinism in the program. The check is carried out by
computing the weakest precondition for each trace. Hence, the counterex-
ample is spurious if the two preconditions are disjoint.

– Refinement: the spurious counterexample is ruled out by adding predicates
that refine the abstraction such that the two traces cannot share their initial
state.

– Termination criterion: the iterative process stops when the two abstrac-
tions (of safe and unsafe states) are disjoint.

We present algorithm InferPrecond (Algorithm 1), which implements a counter-
example-guided abstraction refinement loop for precondition inference. The al-
gorithm starts with an over-approximation of both the set of safe and unsafe
states (lines 5 and 6), denoted by safe] and unsafe], respectively. It iteratively
refines them until their projections onto the initial location become disjoint, i.e.,
(safe] ∧ unsafe] ∧ pc = `0) ≡ false (Figure 3(c)). The computed precondition is
then the set of safe states projected onto the initial location `0 (line 8 of the
algorithm).

The refinement process is applied whenever safe] and unsafe] intersect, i.e.,
when we have a bad trace and a safe one sharing their initial state. In Figure 3(a),
safe] and unsafe] intersect, but the analysis reveals that the initial state is in
reality in safe, thus the (dashed) trace in unsafe] is the one that is spurious.
After refining unsafe], we obtain the abstraction in Figure 3(b). The two sets
still intersect, however this time the spurious trace is in safe], as the initial state
belongs to unsafe. The refinement process is carried out by calling the procedure
Refine at line 14. This procedure takes as parameters two traces, one leading to
the error location and another one leading to the final location, and returns a
new set of predicates. We describe this procedure in detail in the next section.
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Algorithm 1: InferPrecond

Input: set of transition constraints (program) T C
Output: formula (precondition)

1 Var P : set of predicates;

2 Var safe], unsafe]: formula;
3 P := ∅;
4 while true do

5 unsafe] := lfp(pre]P , bad);

6 safe] := lfp(pre]P , final);

7 if (safe] ∧ unsafe] ∧ pc = `0) ≡ false then

8 return (safe] ∧ pc = `0);

9 Let πE and πF two traces s.t. pre]P (πE , bad) ∧ pre]P (πF , final) 6≡ false;
10 if pre(πE , bad) ∧ pre(πF , final) 6≡ false then
11 print(”warning: non-determinism in program”);
12 exit;

13 else
14 P := P ∪ Refine(πE , πF );

Proposition 1. The precondition ϕ computed by algorithm InferPrecond (a) guar-
antees the non-reachability of bad states and (b) the non-exclusion of safe ter-
minating traces.

Proof. (a) ϕ guarantees non-reachability of bad states. As computed by algo-
rithm InferPrecond, ϕ ≡ safe] ∧ pc = `0. Let us assume that there are states in
ϕ from which a bad state can be reached. Thus, there is an error trace πE such
that

pre(πE , bad) ∧ safe] ∧ pc = `0 6≡ false (5)

We also know that
pre(πE , bad)⇒ unsafe] , (6)

as lfp(pre, bad) ≤ lfp(pre], bad). From (5) and (6) we obtain

unsafe] ∧ safe] ∧ pc = `0 6≡ false ,

which contradicts the return condition at line 7 of algorithm InferPrecond.

(b) ϕ does not exclude safe terminating traces. Let us assume that ϕ excludes
a given safe terminating trace πF from `0 to `F , which means that

pre(πF , final) ∧ safe] ≡ false

or
pre(πF , final)⇒ ¬safe] . (7)

We also have
pre(πF , final)⇒ safe] , (8)
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as lfp(pre, final) ≤ lfp(pre], final). From (7) and (8) we conclude pre(πF , final) ≡
false, which means that such a trace πF is not feasible. ut

As program model checking is not decidable, we have no guarantee for ter-
mination of algorithm InferPrecond. However, whenever it terminates, the above
proposition holds.

4.2 Refinement for precondition inference

The main goal of refinement is to generate the minimal possible set of predi-
cates that rule out a maximum number of spurious traces. Hence, the generated
predicates must be as general as possible. We present procedure Refine, which
takes as parameters two traces, one trace πE leading to the the error location,
and another one πF leading to the final location. The returned result is a set of
predicates P that enables the verifier to show the following:

pre]P (πE , bad) ∧ pre]P (πF , final) ≡ false .

The procedure Refine relies on several other procedures: atoms, MinCorePrio
and ExtractNewPreds. The procedure atoms is simply defined as

atoms(ϕ1 ∧ . . . ∧ ϕn) = {ϕ1, . . . , ϕn} .

It takes a conjunction ϕ and returns the set of its conjuncts.
The procedure MinCorePrio takes three arguments. The first one is a con-

junction ϕ, the second one is an arbitrary formula ϕ′ and the third one is a list
L of formulas. As precondition, ϕ and ϕ′ must be inconsistent. The procedure
computes a minimal core of the conjunction ϕ that is inconsistent with the sec-
ond argument ϕ′. There is usually more than one core that can be returned.
This choice can be controlled by means of L, the third argument. MinCorePrio
gives priority to the set of formulas in L to appear in the resulting minimal core,
as illustrated by Algorithm 3. The list L is sorted in ascending order according
the priority of its elements. The algorithm proceeds by eliminating irrelevant
predicates (conjuncts) of lesser priority (front) first. A predicate is irrelevant if
its removal does not have an impact on the inconsistency of the new conjunction
with ϕ′. The lowest priority is given to basic predicates in ϕ by storing them in
the front of the list L (line 6). The consistency test at line 12 of the algorithm
is carried out by calling a theorem prover.

Finally, procedure ExtractNewPreds implements a heuristic for predicate in-
ference. It takes a conjunction as argument and returns a list of predicates sorted
in ascending order of their likely importance to the convergence of the main CE-
GAR loop. We will describe this procedure in more details later in this section.

Back to the main procedure Refine, we see that it first computes the weakest
precondition (pre) for each of the two traces taken as parameters (lines 4 and 5)
to obtain formulas ψE and ψF . It then applies ExtractNewPreds to augment ψE
and ψF with new facts induced by the two formulas (lines 6, 7, 9, 10). Finally,
the minimal unsatisfiabile cores of ψE and of ψF are computed (lines 8 and 11)
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Algorithm 2: Refine

Input: two traces πE and πF

Output: set of predicates P
1 Var P (initially empty), SE , SF : set of formulas;
2 Var Pnew : list of formulas;
3 Var ψE , ψF : formula;
4 ψE := pre(πE , bad);
5 ψF := pre(πF , final);
6 Pnew := ExtractNewPreds(ψE);
7 ψE := ψE ∧ (

∧
p∈Pnew

p);

8 ψE := MinCorePrio(ψE , ψF , Pnew );
9 Pnew := ExtractNewPreds(ψF );

10 ψF := ψF ∧ (
∧

p∈Pnew
p);

11 ψF := MinCorePrio(ψF , ψE , Pnew );
12 P := P ∪ atoms(ψE) ∪ atoms(ψF ) ;
13 Let πE = τ1; . . . ; τi;
14 Let πF = τ ′1; . . . ; τ ′j ;

15 Let SE =
⋃i

k=1{ϕk} s.t. ϕk ≡ pre(τk; . . . ; τi, bad);

16 Let SF =
⋃j

k=1{ϕ
′
k} s.t. ϕ′

k ≡ pre(τ ′k; . . . ; τ ′j , final);
17 foreach k in range {1, . . . , i− 1} do
18 Pnew := ExtractNewPreds(ϕk+1);
19 ϕk+1 := ϕk+1 ∧ (

∧
p∈Pnew

p);

20 ψE := MinCorePrio(ϕk+1[X ′/X], τk ∧ ¬ψE , Pnew [X ′/X]);
21 P := P ∪ atoms(ψE [X/X ′]) ;

22 foreach k in range {1, . . . , j − 1} do
23 Pnew := ExtractNewPreds(ϕ′

k+1);
24 ϕ′

k+1 := ϕ′
k+1 ∧ (

∧
p∈Pnew

p);

25 ψF := MinCorePrio(ϕ′
k+1[X ′/X], τ ′k ∧ ¬ψF , Pnew [X ′/X]);

26 P := P ∪ atoms(ψF [X/X ′]) ;

27 return P ;

and conjuncts appearing in either of them are added to the set of predicates
(line 12).

In the next phase of the algorithm, the two formulas ψE and ψF are used to
guide the inference of new predicates from states (ϕk’s and ϕ′k’s) belonging to
the error trace πE (first loop, lines 17–21) and to the safe one πF (second loop,
lines 22–26). Along each trace and for each triple of pre-state ψ, transition τ and
post-state ϕ, we want to compute the minimal core ϕm of ϕ augmented with facts
inferred via ExtractNewPreds such that pre(τ, ϕm)⇒ ψ, i.e., ϕm[X ′/X]∧τ∧¬ψ ≡
false. This amounts to computing the minimal core of ϕm[X ′/X] with respect
to τ ∧ ¬ψ, as performed in lines 20 and 25 of the algorithm.

The procedure ExtractNewPreds is applied to the states of πE and πF , i.e., the
ϕk’s and ϕ′k’s of each trace. These states are obtained via a backward analysis
of πE and πF during the initial phase of the algorithm (lines 4 and 5). As
mentioned previously, the operator pre (also wp in our case) is limited in inferring



Counterexample-guided Precondition Inference 13

Algorithm 3: MinCorePrio

Input: ϕ a conjunction of formulas, ϕ′ a formula, L a list of formulas
Output: a conjunction of formulas

1 Var ϕ′′: formula;
2 Var S: set of formulas;
3 Var L,L′: list of formulas;
4 S := atoms(ϕ);
5 L′ := L;
6 add elements of S to L′ in the front;
7 add elements of L to S;
8 foreach formula ϕL ∈ L′ do
9 if S − {ϕL} = ∅ then

10 return ϕL;

11 ϕ′′ :=
∧
ϕ | ϕ ∈ S − {ϕL};

12 if ϕ′′ ∧ ϕ′ ≡ false then
13 S := S − {ϕL};

14 ϕ′′ :=
∧
ϕ | ϕ ∈ S;

15 return ϕ′′;

relevant predicates, as it fails to generalize. Therefore, procedure MinCorePrio
biases the computation of the minimal core by giving priority to predicates
found via ExtractNewPreds, which are more likely to be general.

4.3 Predicate inference

The procedure ExtractNewPreds plays a key role. It is based on a system of
inference rules in the spirit of [22], where an interpolation procedure [18] is used
to find predicates, followed by the application of a system of inference rules to
deduce range predicates. In [22], the interpolant provides a concise description
of the cause of infeasibility of traces, thus the base formula is already minimal.
However, the application of the inference rules may introduce redundancies. In
our case, MinCorePrio is applied after inferring the new facts, hence, it prevents
the inundation of the system with irrelevant predicates. This is not just an
optimization: during our experiments, this step has often made the difference
between termination and divergence. The system of inference rules that we are
using is given in Figure 4.

Predicate inference system. Divergence of the refinement process is often caused
by predicates over variables that are increasing or decreasing (counters). This
leads to the generation of sequences of constants when loops are effectively un-
folded. Another cause of divergence are arrays with counter variables in their
index expressions. A simple solution, advocated by [21], is to (initially) discard
such predicates.
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c1.e+ e1 ≥ 0 , −c2.e+ e2 ≥ 0

c2.e1 − c1.e2 ≥ 0
(elim)

x− e ≥ 0 , −x+ e ≥ 0

x = e
(eq)

(c1, c2 > 0)

ϕ(x) , x = e

ϕ(e)
(sub)

ϕ(i), ¬ϕ(j) (i < j)

∃x ∈ {i, . . . , j}. ϕ(x), ∃x ∈ {i, . . . , j}. ¬ϕ(x)
(exist)

∃x ∈ {i, . . . , j}. ϕ(x), j ≤ k
∃x ∈ {i, . . . , k}. ϕ(x)

(ext r)
∃x ∈ {i, . . . , j}. ϕ(x), k ≤ i
∃x ∈ {k, . . . , j}. ϕ(x)

(ext l)

ϕ(i)

∀x ∈ {i}. ϕ(x)
(univ)

∀x ∈ {j, . . . , i}. ϕ(x) , ∀x ∈ {i+ 1, . . . , k}. ϕ(x)
∀x ∈ {j, . . . , k}. ϕ(x)

(link)

i and j are integer variables appearing
in a linear index expression in ϕ (¬ϕ).

Fig. 4. Rules for predicate inference

The aim of he system of rules of Figure 4 is to eliminate likely diverging
sequences of predicates whenever possible by inferring new predicates that are
more general. Among the symbols used in the system, e refers to linear terms, x
is a variable and ϕ is a formula. The rule elim linearly combines two constraints
to eliminate common variables. Rule eq infers equality constraints, which might
be used by rule sub to substitute occurrences of variables with equal terms.
The rule univ builds a quantified formula and link bridges the intervals of two
quantified formulas. Finally, the rule exist produces two existentially quantified
formulas and the rules ext r and ext l extend the interval of an existentially
quantified formula from the right and the left, respectively.

The procedure ExtractNewPreds (Algorithm 4) applies the rules of the infer-
ence system to the conjuncts of the formula given as argument and returns a
list of predicates sorted in ascending order of priority. A predicate p1 has higher
priority than predicate p2 if p1 is produced by a rule where p2 appears as one of
its antecedents. The procedure starts with the list of basic predicates that are
extracted from the formula given as argument. These predicates have the lowest
priority. It then keeps applying the rules to predicates in the list until saturation,
i.e., until no new predicates are produced. The code fragment from line 13 to 17
stores the new predicates according to their priority, i.e., in a position of the list
that is beyond the positions of the associated antecedents.

The algorithm terminates, as the two rules elim and eq are only applied to
basic predicates (condition at line 12). Thus, they will be called a finite number
of times generating a finite number of linear constraints. All other rules will
generate a finite number of predicates, as they all depend on linear constraints.
We furthermore do not consider nested array expressions. The order in which
the rules are applied does not matter.

Illustration Let us illustrate the application of procedure Refine to program
copy 2 of Figure 1(b). We call Refine with the error trace 〈`0, `1, `2, `1, `2, `E〉
and the safe trace 〈`0, `1, `2, `1, `F 〉, which both enter the loop in program copy 2
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Algorithm 4: ExtractNewPreds

Input: formula ϕ
Output: list of formulas

1 Var S, Sb: set of formulas;
2 Var L,L′: list of formulas;
3 Var R: list of inference rules;
4 Sb := atoms(ϕ);
5 insert elements of Sb in L′;
6 R := {ELIM,EQ,UNIV, SUB, LINK,EXIST,EXT L,EXT R};
7 repeat
8 L := L′;
9 foreach rule r ∈ R do

10 Let k be the number of premises of r;

11 foreach tuple t ∈ Lk do
12 if (r 6∈ {ELIM,EQ}) ∨ (∃i ∈ {1, . . . , k} s.t. ti 6∈ Sb) then
13 S := r(t);
14 Let pos = max{posj | j ∈ {1, . . . , k} ∧ L[posj ] = tj};
15 foreach predicate p ∈ S do
16 if p 6∈ L′ then
17 insert p after position pos in L′;

18 until L = L′;
19 return L;

once. The analysis of these two traces is illustrated in Figure 5. The upper
table shows results for the error trace and the lower one for the safe trace. In
both tables, the first column contains the suffix of the trace that is analyzed
backwards using the weakest precondition. The result is shown in the second
column. Finally, the third column shows the new predicates that are inferred
using the information from the second column. The superscript associated with
each predicate is its priority. At the initial location, which corresponds to the
second line in both tables, the predicate ∀x ∈ {0, . . . , a l}. b[x] 6= 0 is the one
with the highest priority for the error trace. It is inferred via the application of
the rule univ followed by sub.

For the safe trace, we have two predicates of highest priority, namely ∃x ∈
{0, . . . , a l}. b[x] 6= 0 and ∃x ∈ {0, . . . , a l}. b[x] = 0. They are both generated by
applying rules exist and ext r successively. The refinement procedure selects
the second predicate as it is the one which separates the two initial states. The
selected predicates are underlined in both tables. Going one step backward from
the initial location `0 to location `1 in both traces, the selected predicates are
∀x ∈ {i, . . . , a l}. b[x] 6= 0 and ∃x ∈ {i, . . . , a l}. b[x] = 0 for the error and
safe trace, respectively. These are the predicates on which the ones selected
at the initial location `0 depend. One can assert that these two predicates are
backwards invariants with respect to the cycle 〈`1, `2, `1〉. They thus cover an
infinite number of traces.
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Error trace WP New predicates

`1, `2, `1, `2, `E i+ 1 ≥ a l, b[i+ 1] 6= 0, i < a l a l = i+ 1〈1〉, ∀x ∈ [i, i+ 1]. b[x] 6= 0〈1〉

b[i] 6= 0 ∀x ∈ [i, a l]. b[x] 6= 0〈2〉

`0, `1, `2, `1, `2, `E 1 ≥ a l, b[1] 6= 0, 0 < a l a l = 1〈1〉, ∀x ∈ [0, 1]. b[x] 6= 0〈1〉

b[0] 6= 0 ∀x ∈ [0, a l]. b[x] 6= 0〈2〉

Safe trace WP New predicates

`1, `2, `1, `F b[i] 6= 0, i+ 1 ≤ a l, b[i+ 1] = 0 ∃x ∈ [i, i+ 1]. b[x] 6= 0〈1〉, ∃x ∈ [i, i+ 1]. b[x] = 0〈1〉

∃x ∈ [i, a l]. b[x] 6= 0〈2〉, ∃x ∈ [i, a l]. b[x] = 0〈2〉

`0, `1, `2, `1, `F b[0] 6= 0, 1 ≤ a l, b[1] = 0 ∃x ∈ [0, 1]. b[x] 6= 0〈1〉, ∃x ∈ [0, 1]. b[x] = 0〈1〉

∃x ∈ [0, a l]. b[x] 6= 0〈2〉, ∃x ∈ [0, a l]. b[x] = 0〈2〉

Fig. 5. Illustration of algorithm Refine on program copy 2. The underlined predicates
are selected by the refinement process. The superscript is the priority of each predicate.

5 Experimental results

Implementation We have implemented our precondition inference technique in
the P-Gen4 tool. P-Gen takes as input a C program containing a procedure
annotated with an assertion to be verified. As output, it returns a formula that
represents the set of pre-states from which the specified assertion holds for any
execution.

Experiments We performed experiments using a desktop computer with 3.7 GB
of RAM and a quad-core processor with 2.83 GHz, running Linux. P-Gen uses
several theorem provers to compute the abstraction and analyze counterexam-
ples. We have initially used Yices [15] and Simplify [14], but observed limitations
when handling quantified formulas. These limitations often lead to the diver-
gence of CEGAR, as the refinement procedure picks up a set of quantifier-free
predicates instead of a quantified predicate, and thus fails to generalize. We have
subsequently integrated Z3 [13] and used it running as a standalone process com-
municating with P-Gen through pipes. The Z3 theorem prover was able to decide
many queries that were not handled by the two other theorem provers.

The results of our experiments are summarized in Table 1. The column “Pre-
condition” shows the type of precondition inferred (“Q” stands for quantified
and “S” stands for simple, i.e., quantifier-free). The column “Iter.U.” (“Iter.S.”)
gives the number of iterations performed by CEGAR to compute the set of unsafe
(safe) states and column “Pred.U.” (“Pred.S.”) gives the number of predicates
inferred to abstract the set of unsafe (safe) states. Our tool is based on lazy
abstraction [19], we therefore provide the average number of predicates per lo-
cation instead of the total number of predicates. This number is an indicator
for memory consumption, as predicates are encoding program states. Finally,

4 http://www.cs.ox.ac.uk/people/nassim.seghir/pgen-web-page
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Program Precond. Iter.U. Pred.U. Iter.S. Pred.S. Alt. Time (s)

memcmp Q + S 5 5 8 3 2 23.64
strcat Q 4 4 4 3 2 0.77

memchr Q + S 5 4 8 3 2 77.30
strlen Q 4 4 4 3 2 0.80

memcpy S 3 2 3 2 1 0.17
memmove S 5 4 9 2 2 0.91

strchr Q 5 7 7 4 2 1.92
r strcat Q 5 2 3 2 2 9.02
strcspn Q 5 6 7 4 2 7.30
strspn Q 5 6 7 4 2 7.05

my strcmp Q 5 7 7 4 2 2.70
my strcpy Q 4 4 4 3 2 1.41

AllNotNull Q + S 6 5 5 3 2 2.07
perfc copy info S 7 2 13 2 2 1.94

bitmap shift right S 15 13 26 5 2 41.60
mvswap S 7 5 8 4 3 0.70

BZ2 hbAssignCodes S 8 4 6 4 2 0.73

Table 1. Experimental results for routines taken from the C string library (upper part)
and from real-world programs (lower part)

column “Alt.” refers to the number of alternations between the two abstractions
(i.e., the number of times the procedure switches between the abstraction of
unsafe states and the abstraction of safe states).

The upper part of the table relates to implementations of routines from
the C string library5. The last two procedures, my strcmp and my strcpy, are
modified versions of the original strcmp and strcpy. In the lower part of the
table, we have AllNotNull, which was used by Cousot et al. as illustration [12].
In their paper, they propose the precondition ∀i. 0 ≤ i < A.length ⇒ A[i] 6=
null. Surprisingly, our tool infers a weaker precondition, as it considers the case
that the length of A can be zero. We obtain (∀i. 0 ≤ i < A.length ⇒ A[i] 6=
null) ∨ A.length ≤ 0. We do not know if this case is missing in [12] or if the
length of A was assumed to be strictly positive. The procedures mvswap and
BZ2 hbAssignCodes are taken from the source code of the compression program
Bzip26. The procedures perfc copy info and bitmap shift right belong to the Xen
Hypervisor7.

Although the refinement heuristic performs well in most of the cases, some-
times it does not select adequate predicates in early stages of the iterative process
(as for memchr, memcmp and bitmap shift right), resulting in high time consump-
tion. However, due to the precision of the precondition, this cost can often be
amortised when checking code that uses the functions.

5 http://en.wikibooks.org/wiki/C Programming/Strings.
6 http://www.bzip.org/
7 http://www.xen.org/products/xenhyp.html
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6 Related Work

The work presented in this paper is linked to several topics: predicate abstrac-
tion, invariant generation, counterexample-guided refinement, modular verifica-
tion and precondition inference. Along these axes, we elaborate on some related
work from the literature.

The combination of predicate abstraction [16] with counterexample-guided
abstraction refinement [9] has been pioneered by the SLAM [1] tool at Mi-
crosoft, and has subsequently been implemented in many other tools, including
BLAST [19], MAGIC [7], ARMC [24], F-SOFT [20] and SATABS [8]. The
DASH [2] and SYNERGY [17] algorithms are variants of this approach where
program testing is used to refine abstractions. All these methods and tools check
the validity of a given assertion. In contrast, we use CEGAR to compute a pre-
condition under which the assertion is valid. Our technique represents a general
scheme for extending the previously mentioned tools to infer preconditions, as
it uses ingredients that are common to all of them.

Moy has proposed a technique to infer preconditions [23] using a combina-
tion of state-of-the-art techniques such as abstract interpretation, weakest pre-
conditions and quantifier elimination. While his technique is stronger than many
existing ones, it is unable to infer quantified preconditions. Our technique is able
to infer universally- as well as existentially-quantified preconditions. Blanc and
Kroening proposed a technique to optimize the simulation of SystemC code [3].
It consists of inferring conditions that are sufficient for the commutativity of
pairs of processes. Like our algorithm, theirs also is based on CEGAR. However,
they have no guarantee that the inferred precondition is exact. Our method does
provide this guarantee.

Taghdiri proposed an approach for generating approximations of relations
(over pre- and post-states) induced by functions [27]. A function specification
(relation) is computed with respect to a context that includes the property to
be verified, thus the specification may lack generality. Moreover, the number of
times loops are unrolled is bounded, making the approach unsuitable for proving
the absence of bugs. Our technique over-approximates the set of all behaviors.
Thus, the preconditions computed by our method guarantee safety.

Sankaranarayanan et al. presented a technique that combines test and ma-
chine learning to infer likely data preconditions over a set of predicates [26]. In
many cases, they were able to learn preconditions that ensure safe executions.
However, as their technique is based on testing, it can only suggest preconditions,
but does not guarantee their soundness.

In the context of abstract interpretation, Cousot et al. formulated the con-
tract inference problem for intermittent assertions precisely [12]. The precondi-
tion extracted by their method does not exclude safe runs even when a non-
deterministic choice could lead to bad ones. Our treatment of non-determinism
is different, as we report a warning to the user. The method described in [12] as
well as [4] and [25] rely on some predefined abstract domains. In our approach,
the precision of the abstraction is automatically tuned as required by means
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of CEGAR. We can also enhance the refinement process by introducing new
inference rules, without having to implement new transformers.

Calcagno et al. presented a technique based on Bi-Abduction to infer pre-
and post-specifications of the heap [6]. One of the major advantages of their
approach is scalability. Similar to their approach, we intend to complete the
picture by integrating our method into an inter-procedural reasoning framework.
Although we can deal with pointers, the properties handled by their technique
are out of the scope for our tool as we do not have a theory to reason about
heap properties. On the other side, contrary to our approach, the preconditions
they compute are not exact, meaning that they might have to be refined. In the
context of termination, Bozga et al. [5], proposed a method to generate exact
preconditions for a restricted class of programs. Other techniques for inferring
preconditions for termination are applicable to a larger set of programs [10],
however they only generate sufficient preconditions.

7 Conclusion

We have presented a new method for precondition inference based on counter-
example-guided abstraction refinement. Given a procedure containing an asser-
tion, our method infers a formula that is sufficient for the validity of the specified
assertion and exclusively refers to state variables visible at the entry point of
the procedure. The inferred precondition is independent of the context, making
it reusable. The computed precondition is also necessary for the validity of the
assertion, i.e., it does not exclude any safe runs of the procedure. Hence, we avoid
false alarms, as the violation of the precondition corresponds to a real error.

Our technique is based on ingredients commonly used in CEGAR-based as-
sertion checkers, and it thus represents a general scheme for extending other
verification tools to infer preconditions. In addition to that, we believe that we
can take advantage of components from other tools, such as advanced refinement
mechanisms, which can be integrated seamlessly into our algorithm. Preliminary
experimental results are encouraging, as we are able to generate exact precon-
ditions (quantified as well as quantifier-free) for string- and array-manipulating
programs.
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