
Software Verification for Weak Memory
via Program Transformation?

Jade Alglave1,2, Daniel Kroening2, Vincent Nimal2, and Michael Tautschnig2,3

1 University College London
2 University of Oxford

3 Queen Mary, University of London

dedicated to the memory of Kohei Honda

Abstract Multiprocessors implement weak memory models, but program veri-
fiers often assume Sequential Consistency (SC), and thus may miss bugs due
to weak memory. We propose a sound transformation of the program to verify,
enabling SC tools to perform verification w.r.t. weak memory. We present experi-
ments for a broad variety of models (from x86-TSO to Power) and a vast range of
verification tools, quantify the additional cost of the transformation and highlight
the cases when we can drastically reduce it. Our benchmarks include work-queue
management code from PostgreSQL.

1 Introduction

Current multi-core architectures such as Intel’s x86, IBM’s Power or ARM implement
weak memory models for performance reasons, allowing optimisations such as instruc-
tion reordering, store buffering or write atomicity relaxation [3]. These models make
concurrent programming and debugging extremely challenging, because the execution
of a concurrent program might not be an interleaving of its instructions, as would be
the case on a Sequentially Consistent (SC) architecture [21]. As an instance, the lock-
free signalling code in the open-source database PostgreSQL failed regression tests on
a PowerPC cluster, due to the memory model. We study this bug in detail in Sec. 5.

This observation highlights the crucial need for weak memory aware verification.
Yet, most existing work assume SC, hence might miss bugs specific to weak memory.
Recent work addresses the design or the adaptation of existing methods and tools to
weak memory [25,29,17,13,23,11,2], but often focuses on one specific model or cannot
handle the write atomicity relaxation of Power/ARM: generality remains a challenge.

Since we want to avoid writing one tool per architecture of interest, we propose a
unified method. Given a program analyser handling SC concurrency for C programs, we
transform its input to simulate the possible non-SC behaviours of the program whilst
executing the program on SC. Essentially, we augment our programs with arrays to
simulate (on SC) the buffering and caching scenarios due to weak memory.

? Supported by ERC project 280053, EPSRC project EP/G026254/1 and the Semiconductor
Research Coropration (SRC) under task 2269.002.

2 Jade Alglave, Daniel Kroening, Vincent Nimal, and Michael Tautschnig

The verification problem for weak memory models is known to be hard (e.g. non-
primitive recursive for TSO), if not undecidable (e.g. for RMO-like models) [9]. This
means that we cannot design a complete verification method. Yet, we can achieve sound-
ness, by implementing our tools in tandem with the design of a proof, and by stressing
our tools with test cases reflecting subtle points of the proof.

We also aim for an effective and unified verification setup, where one can easily plug
a tool of choice. This paper meets these objectives by making three new contributions:

1. To design our transformation, we define in Sec. 3 an abstract state machine that we
prove (in the Coq proof assistant) equivalent to the framework of [8] (recalled in
Sec. 2). We also explain how this equivalence proof allows us to design a drastically
improved transformation with a speed-up of more than two orders of magnitude.

2. Sec. 4 describes our implementation, highlighting the generality of our approach:
we support a broad variety of models (x86/TSO, PSO, RMO and Power) and all
concurrency-aware program analysers for C programs (cf. experiments below).

3. Sec. 5 details our experiments. i) We systematically validate our implementation
w.r.t. our theoretical study with 555 litmus tests exercising weak memory arte-
facts. We study the overhead and validate the viability of our transformation us-
ing Blender [20], CheckFence [13], ESBMC [14], MMChecker [17], Poirot [1],
SatAbs [15], and Threader [16]. ii) We verify an excerpt of the relational database
software PostgreSQL, which has a bug specific to Power. iii) Our transformation
easily scales to systems code from the Linux kernel or the Apache HTTP server,
and also industrial code.

We provide the source and documentation of our tools, our benchmarks, experimental
reports, Coq proofs and their typeset sketches online: www.cprover.org/wmm/

Related Work We focus here on the verification problem, i.e., detecting the behaviours
that are buggy, not all the non-SC ones. This problem is non-primitive recursive for
TSO [9]. It is undecidable if read/write or read/read pairs can be reordered, as in RMO-
like models [9]. Forbidding causal loops restores decidability; relaxing write atomicity
makes the problem undecidable again [10].

Existing solutions use various bounds over the objects of the model [11,19], over-
approximate the possible program behaviours [20,18], or relinquish termination [22].
For TSO, [2] presents a sound and complete solution. We present a provably sound
method that allows to lift any SC method or tool to a large spectrum of weak memory
models, ranging from x86 to Power. We build an operational model; [24] presented
such a model, but theirs is restricted to TSO. Given the undecidability of the problem,
we cannot provide completeness, as we focus on soundness. We do not use any bound
in our theoretical model (Sec. 3), but our implementation uses finite buffers (Sec. 4).

Our approach also reduces the amount of instrumentation in a provably sound man-
ner. Unlike [11], we only instrument selected shared memory accesses. For TSO this
would follow immediately from [12], but we generalise to models such as Power.

Software Verification for Weak Memory via Program Transformation 3

sb
P0 P1

(a)x← 1 (c)y← 1
(b)r1← y (d)r2← x

Final state? r1=0; r2=0

(a)Wx1

(b)Ry0

(c)Wy1

(d)Rx0

po
fr

po
fr

Figure 1. Store Buffering (sb)

iriw
P0 P1 P2 P3

(a)r1← x (c)r3← y (e)x← 1 (f)y← 1
(b)r2← y (d)r4← x

Final state? r1=1; r2=0; r3=1; r4=0;

(a)Rx1

(b)Ry0

(c)Ry1

(d)Rx0

(e)Wx1 (f)Wy1

po po

rf

fr

rf

fr

Figure 2. Independent Reads of Independent Writes (iriw)

2 Context: Axiomatic Memory Model

In an operational view, weak memory effects occur as follows: A processor can commit
a write first to a store buffer, then to a cache, and finally to memory. When a write
hits the memory, all the processors agree on its value. But while the write is in transit
through store buffers and caches, a read can occur before the value is actually available
to all processors from the memory.

To describe such scenarios, we use the framework of [8], which provably embraces
several (weak) architectures: SC [21], Sun TSO (i.e. the x86 model [24]), PSO and
RMO, Alpha, and a fragment of Power. At the core of this framework we use relations
over read and write memory events. We introduce this framework on litmus tests, as
shown in Fig. 1. The left-hand side of the figure shows a multi-threaded program. The
shared variables x and y are initialised to zero. A store instruction (e.g. x ← 1 on P0)
gives rise to a write event ((a)Wx1), and a load (e.g. r1 ← y on P0) to a read event
((b)Ry0). The property of interest is whether there exists an execution of the program
such that the final state is r1=0 and r2=0. To determine this, we study the event graph,
given on the right-hand side of the figure. An architecture allows an execution when
it represents a global happens-before order over all processors. A cycle in an event
graph is a violation of global happens before, unless the architecture relaxes any of
the relations contributing to this cycle. Thus, if the graph has a cycle, we check if the
architecture may relax some relations. Such a relaxation makes the graph acyclic, which
implies that the architecture allows the final state.

In SC, nothing is be relaxed, thus the cycle in Fig. 1 forbids the execution. On the
other hand, x86 relaxes the program order (po in Fig. 1) between writes and reads, thus
the forbidding cycle no longer exists, and the given final state can be observed.

Formalisation An event is a read or a write memory access, composed of a unique
identifier, a direction R for read or W for write, a memory address, and a value. We
represent each instruction by the events it issues. In Fig. 2, we associate the store x← 1
on processor P2 with the event (e)Wx1. We define two utility functions on events:

4 Jade Alglave, Daniel Kroening, Vincent Nimal, and Michael Tautschnig

proc(e) returns the processor executing the event e, and addr(e) yields the address of
a read or write event e.

A set of events E and their program order po form an event structure E , (E,po).
po is a per-processor total order over the events of E. We write dp ⊆ po for the relation
that models the dependencies between instructions, e.g. an address dependency occurs
when computing the address of a load or store from the value of a preceding load.

We represent the communication between processors leading to the final state via
an execution witness X , (ws, rf), which consists of two relations over the events.
First, the write serialisation ws is a per-address total order on writes which models
the memory coherence widely assumed by modern architectures. It links a write w to
any write w′ to the same address that hits the memory after w. Second, the read-from
relation rf links a write w to a read r such that r reads the value written by w.

Given a pair of writes (w′, w) ∈ ws and a read-from pair (w′, r) ∈ rf, we are to
complete global happens before: w′ happens before w by ws and r reads from w′ by rf.
Thus r is to happen before w, as otherwise it would have to read from w. To that aim,
we derive the from-read relation fr from ws and rf. A read r is in fr with a write w
when the write w′ from which r reads hit the memory before w did. Formally, we have:
(r, w) ∈ fr , ∃w′, (w′, r) ∈ rf ∧ (w′, w) ∈ ws.

In Fig. 2, the specified outcome corresponds to the execution on the right if each
memory location initially holds 0. If r1=1 in the end, the read (a) obtained its value
from the write (e) on P2, hence (e, a) ∈ rf. If r2=0 in the end, the read (b) obtained its
value from the initial state, thus before the write (f) on P3, hence (b, f) ∈ fr. Similarly,
we have (f, c) ∈ rf from r3=1, and (d, e) ∈ fr from r4=0.

Relaxed or safe We model the scenario of reads to occur in advance, as described at the
beginning of this section, by some subrelation of the read-from rf being relaxed, i.e.
not included in global happens before. When a processor can read from its own store
buffer [3] (the typical TSO/x86 scenario), we relax the internal read-from rfi. When two
processors P0 and P1 can communicate privately via a cache (a case of write atomicity
relaxation [3]), we relax the external read-from rfe, and call the corresponding write
non-atomic. This is the main particularity of Power or ARM, and cannot happen on
TSO/x86. Some program-order pairs may be relaxed (e.g. write-read pairs on x86, and
all but dp ones on Power), i.e. only a subset of po is guaranteed to occur in this order.
This subset constitutes preserved program order, ppo.

When a relation may not be relaxed, we call it safe. Architectures provide special
fence (or barrier) instructions to prevent weak behaviours. Following [8], the relation
fence ⊆ po induced by a fence is non-cumulative when it only orders certain pairs
of events surrounding the fence, i.e. fence is safe. The relation fence is cumulative
when it additionally makes writes atomic, e.g. by flushing caches. In our axiomatic
model, this amounts to making sequences of external read-from and fences (rfe; fence
or fence; rfe) safe, even though rfe alone would not be safe for the architecture. We
denote the union of fence and the additional cumulativity by ab.

Architectures An architectureA determines the set safeA of the relations safe onA, i.e.
the relations embedded in global happens before. Following [8], we always consider the
write serialisation ws and the from-read relation fr safe. SC relaxes nothing, i.e. rf and

Software Verification for Weak Memory via Program Transformation 5

po are safe. TSO authorises the reordering of write-read pairs and store buffering but
nothing else. Fences are safe by design, thus ab ⊆ safeA.

Finally, an execution (E,X) is valid onAwhen the three following conditions hold.
1. SC holds per address, i.e. the communication and the program order for accesses with
same address po-loc are compatible: uniproc(E,X) , acyclic(ws ∪ rf ∪ fr ∪ po-loc).
2. Values do not come out of thin air, i.e. there is no causal loop: thin(E,X) ,
acyclic(rf ∪ dp). 3. There exists a linearisation of events in global happens before, i.e.
the safe relations do not form a cycle: ghb(E,X) , acyclic((ws ∪ rf ∪ fr ∪ po) ∩ safeA).
Formally:

validA(E,X) , uniproc(E,X) ∧ thin(E,X) ∧ ghb(E,X)

3 Simulating Weak Behaviours on SC

We develop a provably correct instrumentation strategy for programs. To this end, we
first give an operational description of memory models in terms of an abstract state
machine (Sec. 3.1). We then show in Sec. 3.3 the equivalence of the axiomatic model
of Sec. 2 and the abstract machine. We explain in Sec. 3.4 how this equivalence proof
guides our instrumentation strategy.

3.1 Abstract machine

We define a non-deterministic state machine that reads a sequence of labels. The ma-
chine has a designated bad state ⊥, and all other states of the machine represent system
configurations, i.e. the memory, write buffers, and the set of pending reads. We write
addr, evt, and rln for the types of memory addresses, events and relations, respectively.

Definition 1 (State). A state of the machine is either ⊥ or a triple (m,b, rs), where

– the memory (m : addr→ evt) maps a memory address ` to a write to `;
– the write buffer (b : rln evt) is a total order over writes to the same address; the

buffer has a special symbol ⊥b, placed before all events in the buffer;
– the read set (rs : set evt) is a set of read events.

We have a single set of reads, but one totally ordered buffer per address. Exist-
ing formalisations [24,11] use per-thread buffers, whereas our buffers are solely per-
address objects. This allows us to model not only store buffering (which per-thread
objects would allow), but also caching scenarios (fully non-atomic stores) as exhibited
by iriw+dps, i.e. the iriw test of Fig. 2 with dependencies between the reads on P0 and
P1 to prevent their reordering.

The machine performs transitions depending on delay and flush labels. Intuitively,
a delay label pushes an object in the write buffer or read set. A flush label makes it exit
the write buffer or read set. The details of transitions are described below.

Definition 2 (Label). For a write eventw, d(w(w)) denotes its delay label, and f(w(w))
its flush label. For a read event r, its delay label (with direction r, read) is denoted by
d(r(w, r)), and its flush is denoted by f(r(w, r)).

6 Jade Alglave, Daniel Kroening, Vincent Nimal, and Michael Tautschnig

updm(m, w) , x 7→ if addr(x) = addr(w) then w else x

updb(b, w) , b∪{(w1, w2) | w1 = ⊥b ∨ ((⊥b, w1) ∈ b∧ addr(w1) = addr(w))∧
w2 = w}

updrs(rs, r) , rs∪{r}

delb(b, w) , {(w1, w2) | (w1, w2) ∈ b∧w1 6= w ∧ w2 6= w}

delrs(rs, r) , {e | e ∈ rs∧e 6= r}

last(b, w) , (¬(∃w′, (⊥b, w
′) ∈ b) ∧ w = ⊥b)∨

((∃w′, (⊥b, w
′) ∈ b) ∧ (⊥b, w) ∈ b∧¬(∃w′, (w′, w) ∈ b))

rfm(m, b, w) , w = m(addr(r)) ∧ rr(b, {w | (w, r) ∈ po-loc}) = ∅

WRITE TO BUFFER
>

s
d(w(w))−−−−−→ (m,updb(b, w), rs)

DELAY READ
>

s
d(r(w,r))−−−−−−→ (m, b, updrs(rs, r))

WRITE FROM BUFFER TO MEMORY
rr(b, {e | (e, w) ∈ ppo ∪ ab}) = ∅ ∧ (W1)
rs∩{e | (e, w) ∈ ppo ∪ ab} = ∅ ∧ (W2)

rs∩{r | (r, w) ∈ po-loc} = ∅ ∧ (W3)
last(rr(b, {e | addr(e) = `}), w) (W4)

s
f(w(w))−−−−−→ (updm(m, w),delb(b, w), rs)

READ FROM SET
r ∈ rs∧ (R1)

rs∩{r | (r, w) ∈ dp} = ∅ ∧ (R2)
rr(b, {e | (e, r) ∈ ppo ∪ ab}) = ∅ ∧ (R3)
rs∩{e | (e, w) ∈ ppo ∪ ab} = ∅ ∧ (R4)[

rfm(m, b, w) ∨ (R5)
(w 6= m(addr(r)) ∧ w ∈ b∧ visible(w, r))

]
(R6)

s
f(r(w,r))−−−−−→ (m, b, delrs(rs, r))

Figure 3. The abstract machine

A set L of labels is well-formed w.r.t. an event structure E when: in d(w(w)) or
f(w(w)), w is a write of E; in d(r(w, r)) or f(r(w, r)), w is a write of E and r a read of
E, both with the same address; any event of E has a unique corresponding flush label
in L; when a flush label belongs to L, so does its delay counterpart.

Transitions We write s l−→ s′ to denote that the machine can make a transition from
state s to state s′ reading label l. Let the machine be in a state (m,b, rs). Given a label,
the machine performs transitions from one state to another if the conditions described
below are fulfilled. Otherwise, the machine transitions to ⊥ (it gets stuck).

In Fig. 3, we give the formal definition of the transitions of our machine. We need to
define a few auxiliary functions, also formally defined in Fig. 3. We update the memory
with a write w via updm(m, w), a buffer with a write w via updb(b, w), and a set
with a read r via updrs(rs, r). We delete a write w from a buffer via delb(b, w) and
we delete a read r from a set via delrs(rs, r). We write rr(R,S) for the restriction of a
relation R to a set S, i.e. {(x, y) | (x, y) ∈ R ∧ x ∈ S ∧ y ∈ S}. We pick the last write
to an address ` of a buffer via last(b, w). In prose, the transitions are as follows. To

Software Verification for Weak Memory via Program Transformation 7

avoid ambiguity in wording, we write “r-before” or “r-after” to express before or after
w.r.t. the relation r.

– Write to buffer: a write d(w(w)) to address ` can always enter the buffer b, taking
its place b-after all the writes to ` that are already in b.

– Delay read: a read d(r(w, r)) can always enter the read set rs.
– Write from buffer to memory: a write f(w(w)) to address ` exits the buffer b and

updates the memory at ` if:
• there is no event e in the buffer nor in the read set which is ppo∪ ab-before w

(Conditions (W1) and (W2));
• and there is no read from ` in the buffer which is po-before w (Cond. (W3));
• and there is no write to ` in the buffer which is b-before w (Condition (W4)).

– Read from set: a read f(r(w, r)) from ` (Condition (R1)) exits the read set if:
• there is no read in the read set that is dp-before w (Condition (R2));
• and there is no event in the buffer or in the read set that is ppo ∪ ab-before r

(Conditions (R3) and (R4));
• and either w is in memory, and there is no write to ` in the buffer that is po-

before r (Condition (R5));
• or if w is not in memory, w is in the buffer and is visible to r (a notion defined

below) (Condition (R6)).

To define a write w as visible to a read r, we need a few auxiliary functions. We
define the part of the buffer visible to a read r as follows: br , {w | (⊥b, w) ∈
b∧((rfi ⊆ safeA)⇒ proc(w) = proc(r))∧((rfe ⊆ safeA)⇒ proc(w) 6= proc(r))))}.
Now, w is visible to r when:

w and r share the same address `;
w is in the part of the buffer visible to r, namely if rfi (resp. rfe) is safe then w cannot

be on the same (resp. a different) thread as r (w ∈ br);
w is b-before the first write wa to ` that is po-after r;
w is equal to, or b-after, the last write wb to ` that is po-before r.

All states except ⊥ are accepting states. Thus, the abstract machine accepts a se-
quence p of labels l0, l1, . . . if there is a sequence of states s0, s1, . . . such that si

li−→
si+1 and si 6= ⊥ for all i.

Definition 3 (Accepting sequence). A sequence p is a total order over L compatible
with the program order, i.e. for two events (x, y) ∈ po, their delay labels appear in the
same order in p. It is accepting iff the sequence p is accepted by the abstract machine.

3.2 Illustration using examples

We illustrate the machine by revisiting the sb test of Fig. 1 for TSO and the iriw test of
Fig. 2 for Power. Fig. 4 and 5 reproduce on the left the event graphs from Fig. 1 and 2.
On the right, they show the counterparts in the abstract machine. We explain the labels
on the arrows in the next section (§“From the axiomatic model to the machine”). We
use the following graphical conventions. In the axiomatic world (i.e. on the left of our

8 Jade Alglave, Daniel Kroening, Vincent Nimal, and Michael Tautschnig

(a)Wx1

(b)Ry0

(c)Wy1

(d)Rx0

po
fr

po
fr

(a) Axiomatic model

d(a)

f(a)

d(b)

f(b)

d(c)

f(c)

d(d)

f(d)

de

se sese

(b) Machine

Figure 4. Revisiting sb on TSO with our machine

(a)Rx1

(b)Ry0

(c)Ry1

(d)Rx0

(e)Wx1 (f)Wy1

dp dp

rf

fr

rf

fr

(a) Axiomatic model

d(a)

f(a)

d(b)

f(b)

d(c)

f(c)

d(d)

f(d)

d(e)

f(e)

d(f)

f(f)

se

se

se

de

se

se

(b) Machine

Figure 5. Revisiting iriw+dps on Power with our machine

figures), we reflect a pair that an architecture relaxes by a dashed arrow. For example,
in the sb test of Fig. 4 on TSO, the write-read pairs (a, b) and (d, c) can be relaxed.
Likewise, in the iriw+dps test of Fig. 5 on Power, the read-from pairs (e, a) and (f, c)
can be relaxed (as opposed to the read-read pairs (a, b) on P0 and (c, d) on P1, which
are safe because of dependencies).

In any given execution, the abstract machine may choose to relax any pair that is
not safe. Such pairs are depicted with a dashed arrow. Pairs that the machine does not
relax are depicted with a thick arrow.

In Fig. 1, the pairs (a, b) on P0 and (c, d) on P1 are relaxed on TSO. Our machine
may simulate the behaviour permitted on TSO by following the scenario in Fig. 4(b),
which corresponds to the path d(a) → d(b) → d(c) → d(d) → f(b) → f(c) →
f(d)→ f(a). In the figure, the label “se” corresponds to a safe exit, and “de” to a delay
exit, which are formalised below. The machine delays all events w.r.t. program order. In
this scenario, the machine chooses to relax the pairs (a, b) by flushing the read b before
the write a, ensuring that the registers r1 and r2 hold 0 in the end.

In Fig. 2, assume dependencies between the reads on P0 and P1, so that (a, b)
on P0 and (c, d) on P1 are safe on Power. Yet (e, a) and (f, c) may be relaxed on
Power, because Power has non-atomic writes. Our machine may simulate the weak
behaviour exhibited on Power by following Fig. 5(b), which corresponds to the path
d(e) → d(a) → f(a) → d(b) → f(b) → d(f) → f(f) → d(c) → f(c) → d(d) →
f(d) → f(e). Since (a, b) and (c, d) are safe on Power, our machine flushes a before b
(resp. c before d). Since (b, f) ∈ fr (resp. (d, e) ∈ fr), which is always safe, the machine
flushes b before f (resp. d before e), ensuring that b and d read from memory, thus r2

Software Verification for Weak Memory via Program Transformation 9

and r4 hold 0 in the end. Finally, in this scenario, the machine chooses to relax the
pairs (e, a) by flushing a before e, ensuring that r1 and r3 hold the value 1 in the end.

3.3 Equivalence of the axiomatic model and the abstract machine

We now prove the equivalence of the axiomatic model of Sec. 2 and the machine defined
in Sec. 3.1. We first show that we can build an execution valid in the axiomatic model
from any path of labels accepted by the machine (Thm. 1). We then show that we
can build a path of labels accepted by the machine from any execution that is valid
in axiomatic model (Thm. 2).

Thm. 1 (From the machine to the axiomatic model). Let E be an event structure
and L be a set of labels well-formed w.r.t. E. Then there exists an execution witness
valid for E, if there is an accepting sequence p over L.

Let ptoX(p, L) denote the execution witness of Thm. 1. Recall from Sec. 2 that an
execution witness is a pair of write serialisation and read-from map. Intuitively, we build
these as follows. The write serialisation gathers the pairs of writes to the same address
according to the order of their flushed parts in the accepting sequence p: {(w1, w2) |
addr(w1) = addr(w2) ∧ (f(w(w1)), f(w(w2))) ∈ p}. For the read-from map, we
simply gather the pairs given by the labels of L: {(w, r) | addr(w) = addr(r) ∧
f(r(w, r)) ∈ L}.

Proof (Thm. 1). We need to show that (E,ptoX(p, L)) passes the uniproc, thin and ghb
checks. The three proofs follow the same lines, thus we focus on the first for brevity.

The execution passes the uniproc check iff for all (x, y) ∈ po-loc, we do not have (y, x) ∈
rf ∪ fr ∪ ws ∪ (ws; rf) ∪ (fr; rf) [4, App. A]. By contradiction take (x, y) ∈ po-loc and (y, x) ∈
rf ∪ fr ∪ rf. We proceed by case disjunction over (y, x) ∈ rf ∪ fr ∪ ws ∪ (ws; rf) ∪ (fr; rf). We
write ` for the address shared by x and y.

If (y, x) ∈ rf, f(r(y, x)) is in L. Since p is accepting, the Read from set transition on
f(r(y, x)) does not block. Hence y is in memory, or y is in the buffer and visible to x. If y is
in memory, y has been flushed, i.e. the Write from buffer to memory transition on f(w(y)) did
not block. Hence there is no read from ` po-before y in the set. Yet (x, y) ∈ po-loc, and x is still
in the set when y is in memory, a contradiction. If y is in the buffer and visible to x, y is in the
buffer before the first write to ` po-after x. Yet, (x, y) ∈ po-loc, a contradiction.

For brevity, we present only the rf case; all the other cases are similar, using the premises of
the rules of the machine. For example the (y, x) ∈ ws case uses the Write from buffer to memory
rule, in particular the fact that y exits the buffer if there is no write to ` before it in the buffer; yet
x is still in there. The (y, x) ∈ fr case uses the Read from set rule, in particular the fact that if the
write w from which x reads is in memory, then there is no write to ` po-before y in the buffer;
yet x is in there. If w is in the buffer, we use the fact that w is equal to, or in the buffer after, the
last write to ` po-before x, which will block the flush of w, a contradiction. ut

For the other direction, we first build labels from the events of E. We augment
our events with directions: a write w becomes w(w) and r becomes r(w, r), where
(w, r) ∈ rf. Then we split an augmented event e into its delayed part d(e), and its
flushed part f(e). We write labels(E,X) for the labels built from the events of E.

Then we form the delay pairs of (E,X), as follows. We build the relation ndelay
over the events of E, such that: ((ws∪ rf∪ fr)∩ safeA) ⊆ ndelay; ndelay is transitive;

10 Jade Alglave, Daniel Kroening, Vincent Nimal, and Michael Tautschnig

ndelay is irreflexive; if (x, y) 6∈ ndelay then (y, x) ∈ ndelay. The delay pairs are the
pairs (x, y) of events of E that are not in ndelay.

Given (E,X) and a choice of delay pairs, we build an accepting path p as follows,
with e, e1, and e2 denoting augmented events:

Delay before flush we always delay an event e before we flush it, i.e. (d(e), f(e)) ∈ p;
Enter (e1, e2) ∈ po enter the buffer or set in this order, i.e. (d(e1),d(e2)) ∈ p;
Rf a write enters before we flush a read from it, i.e. (d(e1), f(e2)) ∈ p if (e1, e2) ∈ rf;
Safe Exit (e1, e2) ∈ ndelay are flushed in the same order, i.e. (f(e1), f(e2)) ∈ p.
Delay Exit (e1, e2) 6∈ ndelay are flushed in the opposite order, i.e. (f(e2), f(e1)) ∈ p.

Reconsider Fig. 4(b) and 5(b). We omit the arrows corresponding to the first three
cases to ease the reading of the figures. In Fig. 4(b), we chose (a, b) to be a delay pair,
hence we flush them b before a, following the delay exit rule. On the contrary, (b, c),
(c, d) and (d, a) are not delay pairs, hence we flush b before c, c before d and d before
a, following the safe exit rule. The same explanation applies in Fig. 5 to the pair (e, a)
being delayed, and (a, b), (f, c), (c, d) and (d, e) being safe.

We build Xtop(E,X,ndelay) as above. As ndelay is transitive and irreflexive,
Xtop(E,X,ndelay) is acyclic. Hence the transitive closure (Xtop(E,X, ndelay))+

is a partial order of the labels. Any linearisation lin((Xtop(E,X,ndelay))+) of this
transitive closure forms an actual path, which we show accepting when 1. X is valid 2.
this linearisation has finite prefixes, in which case we say that (E,X) has finite prefixes:

Thm. 2 (From the axiomatic model to the machine). For any valid execution (E,X)
with finite prefixes, there is an accepting path p over labels L well-formed w.r.t. E.

Proof. We need to show that no transition can block the machine. The Write to buffer and Delay
read transitions are trivial since they can never block.

For the Write from buffer to memory case, suppose as a contradiction that the transition
blocks on a write w to an address `. If there is e ppo∪ab-before w in the buffer or the set, (e, w)
cannot be a delay pair (because ppo and ab are safe), i.e. should be flushed in order, contradicting
the presence of e in the buffer or the set. Otherwise, there is in the set a read r from ` po-beforew.
Therefore (r, w) is in fr, thus safe, hence cannot be a delay pair, and the same argument applies.
Finally, if there is a writew′ to ` beforew in the buffer; one can show that (w′, w) is in ws, hence
w′ should be flushed before w, a contradiction.

For the Read from set case, suppose as a contradiction that the transition blocks on a read
(w, r) with address `. If there is a read r′ dp-before w in the set, one can show that r′ should be
flushed before r, and r should be flushed before r′ (i.e. a thin-air cycle in X), a contradiction. If
there is an event ppo ∪ ab-before r in the buffer or the set, the reasoning is the same as above
in the write case. If w is in memory and there is a write to ` po-before r in the buffer, we create
a uniproc cycle, a contradiction. If w is in the buffer and not visible to r, there are two cases.
Either w is not on a thread whose buffer r can read w.r.t. A, in which case (w, r) do not form a
delay pair and should be flushed in this order, contradicting the presence of w in the buffer. Or
w is in the buffer after the first write to ` po-after r (or before the last write to ` po-before r), in
which case we create a uniproc cycle. ut

3.4 Instrumentation

Thm. 2 leaves freedom in the instrumentation strategy. We can exploit the choice of
delay pairs and the choice of the linearisation of Xtop(E,X) in order to reduce the
overhead of running or verifying an instrumented program.

Software Verification for Weak Memory via Program Transformation 11

d(a)

f(a)

d(b)

f(b)

d(c)

f(c)

d(d)

f(d)

se se

de

se

(a) Machine ((b, c) delay)

m(a)

m(b)

d(c)

f(c)

m(d)

se
se

de

se

(b) One pair only

Figure 6. Choices for instrumenting sb for TSO

d(a)

f(a)

d(b)

f(b)

d(c)

f(c)

d(d)

f(d)

d(e)

f(e)

d(f)

f(f)

se

se

se

se

se

de

(a) (f, c) delay

m(a)

m(b)

d(c)

f(c)

m(d)

m(e) d(f)

f(f)

se

se

se

se

se

de

(b) One pair only

Figure 7. Choices for instrumenting iriw+dps for Power

Choice of delay pairs The conditions on the ndelay relation restrict the choice of delay
pairs. We have to put at least all the safe pairs into ndelay, by the first condition.

Since ndelay is transitive and irreflexive, it is acyclic. An execution (E,X) presents
a cycle iff it is not SC (if it is SC, all pairs are safe and there is no cycle). [7, Thm.1]
shows that an execution is valid on A but not on SC iff it contains critical cycles4.
Thus we can put all pairs in ndelay, except one unsafe pair per critical cycle, which
corresponds to the last condition over ndelay.

In Fig. 4(b), we build an accepting path corresponding to the axiomatic execution
of Fig. 4(a) by choosing the unsafe pair (a, b) on the cycle to be a delay. In Fig. 6(a),
we choose the unsafe pair (c, d). Similarly for Fig. 5(a), we can build an accepting path
corresponding to the axiomatic execution of Fig. 5(a) by choosing e.g. (e, a) as delay
(cf. Fig. 5(b)). In Fig. 7(a), we choose (f, c) as delay.

Our examples are symmetric, thus the choice of which pair to delay should not
make a difference. In Fig. 1, (a, b) and (c, d) are write-read pairs. Similarly in Fig. 2,
(e, a) and (f, c) are of the same nature, namely rfe pairs. For asymmetric examples, the

4 We recall here the definition of [7]. Two events (x, y) are competing, written (x, y) ∈ cmp, if
they are from distinct processors, to the same address, and at least one of them is a write (e.g.
in Fig. 2, the read (a) from x on P0 and the write (e) to x on P2). A cycle σ ⊆ cmp∪po
is critical when it is not a cycle in (cmp ∪ (ppo∩ safeA)+) and it satisfies the two following
properties: (i) Per processor, there are at most two memory accesses (x, y) on this processor
and addr(x) 6= addr(y). (ii) For a given memory address x, there are at most three accesses
relative to x, and these accesses are from distinct processors ((w,w′) ∈ cmp, (w, r) ∈ cmp,
(r, w) ∈ cmp or {(r, w), (w, r′)} ⊆ cmp). Fig. 2, shows a critical cycle of iriw on Power.

12 Jade Alglave, Daniel Kroening, Vincent Nimal, and Michael Tautschnig

chosen delayed pair can make a crucial difference (cf. Sec. 5), if the instrumentation of
one pair causes more execution or verification time overhead than the other.

Choice of the linearisation Thm. 2 accepts any linearisation of (Xtop(E,X,ndelay))+.
Yet, some require less instrumentation than others. Consider Fig. 6(a) and (b): in both
we choose to delay the pair (c, d). On the left, we can pick any interleaving (compatible
with Xtop) of the delayed and flushed events to instantiate Thm. 2, e.g. d(a)→ d(b)→
d(c)→ d(d)→ f(b)→ f(d)→ f(c)→ f(a).

On the right, we write m(e) when the delayed and flushed part of an event happen
without intervening events in between. Observe that in this case, the event e occurs
w.r.t. memory: if it is a read, it reads from the memory; if it is a write, it writes to
memory. In Fig. 6(b), we pick a particular interleaving, namely the one where all events
are w.r.t. memory, except for the event c. This interleaving requires to instrument only
one instruction, as opposed to all of them on the left.

Similarly in Fig. 7(a) and (b), we choose in both cases to delay the pair (f, c). On
the left, we instrument all instructions. On the right, we instrument only the pair (f, c).

4 Implementation

4.1 Overview

We implemented the transformation technique of Sec. 3. Our tool reads a concurrent C
program, possibly with inline assembly mfence, sync, or lwsync instructions (cf.
Sec. 2). It generates a new concurrent C program augmented with C equivalents of write
buffers and read sets of Sec. 3.1. The transformation proceeds in three main steps:

1. We devise an abstract event structure, as defined below, the concretisation of which
amounts to all event structures (cf. Sec. 2) of the program.

2. Given an architecture, we identify potential critical cycles in this structure.
3. We instrument unsafe pairs in the cycle, as described in Sec. 3.4.

The resulting program is then passed to any SC program analyser.
The first two steps guide the program transformation of the third step, in order to

reduce the overhead for subsequent verification. As our experiments confirm (Sec. 5),
we drastically improve verification performance over instrumenting all instructions.

4.2 Abstract event structures

As described in Sec. 3, we can choose to delay only one pair per critical cycle. To do so,
all critical cycles need to be identified first. Sec. 2 defines cycles over events and event
structures, which use concrete addresses and values, and thus correspond to concrete
execution traces. As the enumeration of all traces is infeasible, we compute a conser-
vative, over-approximate set of possible cycles using static analysis. In this program
analysis we introduce abstract events, which summarise all concrete events that have
the same process identifier, program counter, direction and memory address. We extend
the definition of event structure to abstract event structures, which are identical except
that they use abstract events.

Software Verification for Weak Memory via Program Transformation 13

Statements to abstract events The derivation of an abstract event structure from a non-
branching multi-threaded program is straight-forward. For each thread, decompose each
statement into abstract events, extracting all writes or reads of shared memory. For
an assignment to a location designated by a pointer variable, consider the example
*(&x+z) = y;, where &x denotes the address of x and *p the value held at ad-
dress p. We first read y, then read z and finally we write to the object pointed to by
&x+z, which is determined using an alias analysis5. If the precision of the alias ana-
lysis is insufficient to determine the object, we assume that this write can target any of
the objects in the program.

1 void∗ thread 1 (void∗) {
2 int r1 ;
3 x = 2;
4 r1 = y;
5 y = 2;
6}
7 void∗ thread 2 (void∗) {
8 int r2 , r3 ;
9 y = 1;

10 r2 = z;
11 r3 = x;
12}

Wx

Ry

Wy

Wy

Rz

Rx

po

po

po

pocom

com

com

Wx

Ry

Wy

Wy

Rz

Rx

po

po

po

po

po

fr

fr

com

Figure 8. The program on the left contains an sb cycle (cf. Fig. 1). We build the abstract event
graph in the middle, and indeed detect the cycle in the graph, on the right.

Abstract event graph In order to devise SC cycles that become critical cycles on a
weaker architecture, we look for cycles in ws ∪ fr ∪ rf ∪ po (definition of SC, [5, Thm.
3]). Abstract events in each thread are ordered by program order, po, which we derive
as described below. As we do not use concrete values, we compute over-approximations
of the relations ws, rf and fr. We further abstract from directed edges and use undirected
edges in these over-approximations. We call the abstract event structure equipped with
over-approximations of ws, rf and fr an abstract event graph. We compute the over-
approximations as follows:

– the internal rf, fr and ws pairs (relating two events on the same thread) are already
covered by po edges;

– the external rf, fr and ws pairs (relating two events from different threads) are ab-
stracted by undirected external communications, denoted by com, and relate any
pair of write-read, read-write or write-write between two distinct threads.

Fig. 8 depicts this first step in the middle, which is the resulting abstract event graph of
the program shown on the left-hand side. A concretisation of the abstract event graph
may yield critical cycles. Fig. 8 shows an example of a critical cycle on the right-hand

5 The alias analysis we use is known to be sound for the weak architectures we consider [6].

14 Jade Alglave, Daniel Kroening, Vincent Nimal, and Michael Tautschnig

side. Whether this cycle can be fully concretised to an execution witness, filling in
concrete values in all abstract events, is left as task to a verification back end.

Control flow To build an abstract event graph for branching programs, we consider the
if-then-else branches, loops and function calls. Functions are analysed as if they were
inlined, thus recursion is not handled. For if-then-else, po in the abstract event graph
follows both of the branches separately, and then joins at the end of the condition. For
loops or backward jumps and given a pair (x, y) ∈ po, the back-edge may render x
reachable from y as well. We thus include copies of x and y in the abstract event graph,
such that (y, x) in po if such a back-edge exists. By [7] it suffices to use a single copy,
as a critical cycle does not require more than two events in program order per thread.

The analysis proceeds in a forward manner along the control-flow graph of a given
program. For each statement recorded in a node of the control-flow graph, the abstract
events are computed. When preserved program order is defined via dp (cf. Sec. 2),
possible dependencies between abstract events are recorded as well.

4.3 Detecting critical cycles

Given the abstract event graph of a program, we need to compute an over-approximate
set of critical cycles. To increase scalability of this procedure, we first identify all
strongly connected components (SCCs) in the graph using Tarjan’s 1972 algorithm [27],
which is linear in the size of the abstract event graph. The detection of critical cycles
can then be performed in parallel and independently for each SCC, as no cycle can span
multiple SCCs. The SCCs also offer first insights about the program under test: two
distinct SCCs will refer to two parts of the code that are independently accessing and
updating shared memory.

Detecting all the critical cycles in an SCC Our cycle computation is based on Tarjan’s
1973 algorithm [28]. The abstract event graph, however, does not encode the transitive
closure of po. Thus, we first extract candidate cycles by picking at most two abstract
events per thread, which are guaranteed to be (transitively) linked by program order.
For each candidate cycle we then perform additional filtering, as such a cycle need not
be critical: a candidate is guaranteed to be not critical if it does not contain any unsafe
pair for the given architecture, or is a cycle in uniproc or thin-air. All of these checks
need to be performed a-posteriori for a complete cycle.

Tarjan’s original algorithm is worst-case exponential in the number of vertices (ab-
stract events), and our subsequent filtering adds additional complexity. To deal with
this complexity, we soundly limit the exploration using properties of critical cycles,
such as all program-order pairs per address in a critical cycle being one of write-write,
read-write, write-read or read-write-read [4].

4.4 Selecting and instrumenting delay pairs

The above cycle detection yields candidates for unsafe pairs of abstract events to be
delayed in each cycle. Following Sec. 3.4, we instrument one pair to delay per cycle.

Software Verification for Weak Memory via Program Transformation 15

We may select these pairs arbitrarily, but we describe below a weighted instrumentation
that decidedly reduces verification time, as we show in Sec. 5.

We first normalise the program such that all shared memory accesses appear in
assignments only; any reads in branching conditions or function call parameters are
moved to temporary variables as follows: if (φ(x)) ...; 7−→ tmp = φ(x); if(tmp) ...; for
an expression φ over a shared memory address x. In the following, we thus restrict
ourselves to assignment statements.

For each memory address x of events in unsafe pairs we introduce an array b(x).
In addition to the properties described in Sec. 3.1, we also keep track of the originating
thread of the write to x. We introduce an additional pointer for each local variable
reading from a shared memory address, i.e. an r such that r = x;. In a pair to delay, in
one of the critical cycles or after, we equip r with a pointer rs(r), which implements
the read set of Sec. 3.1. We now describe the instrumentation of writes, then reads.
To soundly over-approximate all possible behaviours, all instrumented operations are
guarded by if (∗) , expressing non-deterministic choice.

Instrumenting writes We implement here the two operations associated to the weak-
memory effects of a write w, as defined in Sec. 3.1: (1) delaying a write, d(w(w)), by
appending to the buffer, and (2) flushing a write, f(w(w)), removing it from the buffer.
A delayed write amounts to appending an element to the array:

x = smthg; 7−→ if(∗) b(x).push(smthg,thread.number); else x = smthg;

According to Sec. 3.1, each delay is accompanied by a flush. Yet the point in time when
the flush happens is not determined. We would thus need to add non-deterministic flush
instructions at each statement in the program. This transformation would make the pro-
gram highly non-deterministic, and very hard for a model checker to analyse. Therefore,
we insert flushes only where they might have an effect, i.e. before each potential read
from the address that was written to, and make them flush a non-deterministic number
of writes in FIFO-manner. The function take implements the semantics of “write from
buffer to memory” of Fig. 3 on C arrays for a non-deterministic number of elements,
and returns the resulting in-memory value at address x.

smthg = x; 7−→ if(∗) x = b(x).take(thread.number); smthg = x;

Instrumenting reads Here we are to implement the two operations for reads: delaying
a read d(r(w, r)) and reading from the set, f(r(w, r)). We delay a read by recording the
memory address to be read from. Note that, given our program normalisation, our reads
manifest as assignments to local variables. For a local variable r1, we delay the read of
x as follows:

r1 = x; 7−→ if(∗) rs(r1) = &x; else r1 = x;

For flushing the read, considerations analogous to the write case are made: we flush
non-deterministically upon an actual read (then of r1) only, instead of every program
point. The flush dereferences the address previously recorded:

r2 = r1 ; 7−→ if(rs(r1) != 0 && ∗) { r1 = ∗rs(r1); rs(r1) = 0;} r2 = r1;

16 Jade Alglave, Daniel Kroening, Vincent Nimal, and Michael Tautschnig

Input: the edges to instrument E, the cycles Cj

Problem: minimise
∑

ei∈E d(ei) ∗ xi
s.t. ∀j,

∑
ei∈Cj∩E xi >= 1 (ensures soundness)

where
ei is a pair to potentially instrument,
xi is a Boolean variable stating whether we instrument ei,
and d() is the cost of an instrumentation.
Output: the xi, stating which pairs to instrument

Figure 9. Mixed integer programming problem to choose the pairs to instrument

4.5 Weighted selection of unsafe pairs

Above, we selected an arbitrary unsafe pair per cycle, as this suffices to reveal all
weak-memory effects (cf. Sec. 3). We do observe, however, that the choice of pairs
has a strong effect on verification time. We thus assign an empirically devised cost d
to candidate pairs. With our implementation, we chose d(poW*)=1 (pairs in program
order where the first event is a write), d(poRW)=2 (read-write pairs in program order),
d(rfe)=2 (write-read pairs on different threads), d(poRR)=3 (read-read pairs in program
order). Given a set E of pairs to delay in the graph with critical cycles Cj , we solve the
mixed integer programming problem of Fig. 9. Our experiments show that this encoding
yields a speedup of 26% over all architectures with an SC bounded model-checker.

5 Experimental Results

We exercised our method and measured its cost using 8 tools. We considered 5 ANSI-C
model checkers: a bounded model checker based on CBMC; SatAbs, a verifier based
on predicate abstraction, using Boom as the model checker for the Boolean program;
ESBMC, a bounded model checker; Threader, a thread-modular verifier; and Poirot,
which implements a context-bounded translation to sequential programs. These tools
cover a broad spectrum of symbolic algorithms for verifying SC programs. We also
experimented with Blender, CheckFence, and MMChecker. We ran our experiments
on Linux 2.6.32 64-bit machines with 3.07 GHz (only Poirot was run on a Windows
system). Further details on the results are available on our web page.

0 20 40 60 80 100

Blender

CheckFence

CBMC

ESBMC

MMChecker

Poirot

SatAbs

Threader

Distribution of verification outcomes [%]

ok
error/timeout
wrong result

Timeout: 900s

Figure 10. All tools on all litmus tests and models

Validation First, we systematically
validate our setup using 555 lit-
mus tests exposing weak memory
artefacts (e.g. instruction reorder-
ing, store buffering, write atomicity
relaxation) in isolation. The diy tool
automatically generates x86, Power
and ARM assembly programs im-
plementing an idiom that cannot be
reached on SC, but can be reached
on a given model. For example, sb

Software Verification for Weak Memory via Program Transformation 17

10−2 10−1 100 101 102
10−2

10−1

100

101

102

Weighted

In
st
ru
m
en
ta
ti
on

p
ro
p
os
ed

b
y
A
ti
g
et

al
.

(a) All accesses [11] vs. weighted selection

10−2 10−1 100 101 102
10−2

10−1

100

101

102

Weighted

A
ll
p
ai
rs

(b) All pairs vs. weighted selection

Figure 11. Comparison of verification times of CBMC (seconds) for different instrumentations

(Fig. 1) exhibits store buffering, thus the final state can be reached on any weak model,
from TSO to Power.

Each litmus test comes with an assertion that models the SC violation exercised
by the test, e.g. the outcomes of Fig. 1 and 2. Thus, verifying a litmus test amounts
to checking whether the model under scrutiny can reach the specified outcome. We
then convert these tests automatically into C code, leading to programs of 48 lines on
average, involving 2 to 4 threads.

These examples provide assurance that we soundly implement the theory of Sec. 3:
we verify each test w.r.t. SC, i.e. without transformation, then w.r.t. TSO, PSO, RMO,
and Power. Despite the tests being small, they provide challenging concurrent idioms to
verify. Fig. 10 compares the tools on all tests and models. Most tools, with the exception
of Blender, CBMC and SatAbs, time out or give wrong results on a vast majority of
tests. Blender only expectedly fails on tests involving lwsync fences; CBMC and
SatAbs return spurious results in 1.5% of the tests, caused by the over-approximation
in the implementation of our instrumentation.

Fig. 11 compares the verification time using CBMC over all litmus families (e.g.
rfe tests exercise store atomicity, podwr tests exercise the write-read reordering) for dif-
ferent instrumentation options. First, with the restriction to TSO, Fig. 11(a) compares
the instrumentation of all shared memory accesses proposed in [11] to the weighted
transformation (Sec. 4.5). On average, we observe a more than 300-fold speedup in
verification time. In addition, the reduced instrumentation also yields 246 fewer spuri-
ous results. We also quantify the specific benefit of the weighted selection of pairs in
Fig. 11(b). We compare the cost of the instrumentation of all pairs on critical cycles
with that of the weighted transformation (Sec. 4.5) for all models, tools and tests. The
average speedup over all models and tests is still more than one order of magnitude. We
give the detailed results for all experiments online.

We also verified several TSO examples that have been used in the literature (details
are online). Note that these examples in fact only exhibit idioms already covered by our
litmus tests (e.g. Dekker corresponds to the sb test of Fig. 1). Furthermore, we applied
the instrumentation to code taken from the Read-Copy-Update algorithm in the Linux

18 Jade Alglave, Daniel Kroening, Vincent Nimal, and Michael Tautschnig

kernel and scheduling code in the Apache HTTP server, as well as industrial code from
IBM. We observe that the instrumentation tool completes even on such code of up to
28,000 lines in less than 1 second, and in 32 seconds on IBM’s code. We now study one
real-life example in detail, an excerpt of the relational database software PostgreSQL.

Worker Synchronization in PostgreSQL Mid 2011, PostgreSQL developers observed
that a regression test occasionally failed on a multi-core PowerPC system.6 The test
implements a protocol passing a token in a ring of processes. Further analysis drew
the attention to an interprocess signalling mechanism. It turned out that the code had
already been subject to an inconclusive discussion in late 2010.7

1 #define WORKERS 2
2 volatile Bool latch [WORKERS];
3 volatile Bool flag [WORKERS];
4 void worker(int i)
5{ while (! latch [i]);
6 for (;;)
7 { assert (! latch [i] || flag [i]);
8 latch [i] = 0;
9 if (flag [i])

10 { flag [i] = 0;
11 flag [(i+1)%WORKERS] = 1;
12 latch [(i+1)%WORKERS] = 1; }
13 while (! latch [i]); } }

Listing 1. Token passing in pgsql.c

The code in Listing 1 is an inlined version of
the problematic code, with an additional asser-
tion in line 7. Each element of the array “ latch ”
is a Boolean variable stored in shared memory
to facilitate interprocess communication. Each
working process waits to have its latch set and
then expects to have work to do (from line 9
onwards). Here, the work consists of passing
around a token via the array “ flag ”. Once the
process is done with its work, it passes the token
on (line 11), and sets the latch of the process the
token was passed to (line 12).

Starvation seemingly cannot occur: when a
process is woken up, it has work to do (has
the token). Yet, the PostgreSQL developers ob-

served that the wait in line 13 (which in the original code is bounded in time) would
time out, thus signalling starvation of the ring of processes. The developers identified
the memory model of the platform as possible culprit: it was assumed that the processor
would at times delay the write in line 11 until after the latch had been set.

We transform the code of Listing 1 for two workers under Power. The event graphs
show two idioms: lb (load buffering) and mp (message passing), in Fig. 12 and 13. The
code fragments on the left-hand side give the corresponding line numbers in Listing 1.

The lb idiom contains the two if statements controlling the access to both critical
sections. Since the lb idiom is yet unimplemented by Power machines (despite being
allowed by the architecture [26]), we believe that this is not the bug observed by the
PostgreSQL developers. Yet, it might lead to actual bugs on future machines.

In contrast, the mp case is commonly observed on Power machines (e.g. 1.7G/167G
on Power 7 [26]). The mp case arises in the PostgreSQL code by the combination of
some writes in the critical section of the first worker, and the access to the critical section
of the second worker; the relevant code lines are in Fig. 13.

We first check the fully transformed code with SatAbs. After 21.34 seconds, SatAbs
provides a counterexample (given online), where we first execute the first worker up to
line 13. All accesses are w.r.t. memory, except at lines 11 and 12, where the values 0

6 http://archives.postgresql.org/pgsql-hackers/2011-08/msg00330.php
7 http://archives.postgresql.org/pgsql-hackers/2010-11/msg01575.php

Software Verification for Weak Memory via Program Transformation 19

pgsql (lb)
Worker 0 Worker 1

(9)if(flag[0]) (9)if(flag[1])
(11)flag[1]=1; (11)flag[0]=1;

Observed: flag[0]=1; flag[1]=1

R flag[0]

W flag[1]

R flag[1]

W flag[0]

po
rf

po
rf

Figure 12. An lb idiom detected in pgsql.c
pgsql (mp)

Worker 0 Worker 1
(11)flag[1]=1; (5)while(!latch[1]);
(12)latch[1]=1; (9)if(flag[1])

Observed: latch[1]=1; flag[1]=0

W flag[1]

W latch[1]

R latch[1]

R flag[0]

po
rf

po
fr

Figure 13. An mp idiom detected in pgsql.c

and 1 are stored into the buffers of flag[0] and flag[1]. Then the second worker starts,
reading the updated value 1 of latch[1]. It exits the blocking while (line 5) and reaches
the assertion. Here, latch[1] still holds 1, and flag[1] still holds 0, as Worker 0 has not
yet flushed the write waiting in its buffer. Thus, the condition of the if is not true, the
critical section is skipped, and the program arrives at line 13, without having authorised
the next worker to enter the critical section, and loops forever.

As mp can arise on Power e.g. because of non-atomic writes, we know by Sec. 3.4
that we only need to transform one rfe pair of the cycle, and relaunch the verification.
SatAbs spends 1.29 seconds to check it (and finds a counterexample, as previously).

PostgreSQL developers discussed fixes, but only committed comments to the code
base, as it remained unclear whether the intended fixes were appropriate. We proposed
a provably correct patch solving both lb and mp. After discussion with the developers8,
we improved it to meet the developers’ desire to maintain the current API. The final
patch introduces two lwsync barriers: after line 8 and before line 12.

6 Conclusion

We have presented a provably sound method to verify concurrent software w.r.t. weak
memory. Our contribution allows to lift SC methods and tools to a wide range of weak
memory models (from x86 to Power), by means of program transformation.

Our approach crucially relies on the definition of a generic operational model equi-
valent to the axiomatic one of [8]. We do not favour any style of model in particular,
but we highlight the importance of the availability of several equivalent mathematical
styles to model semantics as intricate as weak memory. In addition, operational models
are often the style of choice in the verification community; we contribute here to the
vocabulary to tackle the verification problem w.r.t. weak memory.

Our extensive experiments and in particular the PostgreSQL bug demonstrate the
practicability of our approach from several different perspectives. First, we confirmed
a known bug (mp), and validated the fix proposed by the developers, including an eval-
uation of different synchronisation options. Second, we found an additional idiom (lb),
which will cause a bug on future Power machines; our fix repairs it already.

8 http://archives.postgresql.org/pgsql-hackers/2012-03/msg01506.php

20 Jade Alglave, Daniel Kroening, Vincent Nimal, and Michael Tautschnig

References

1. http://research.microsoft.com/en-us/projects/poirot/
2. Abdulla, P., Atig, M.F., Chen, Y., Leonardsson, C., Rezine, A.: Counter-example guided

fence insertion under TSO. In: TACAS (2012)
3. Adve, S.V., Gharachorloo, K.: Shared Memory Consistency Models: A Tutorial. IEEE Com-

puter 29, 66–76 (1995)
4. Alglave, J.: A Shared Memory Poetics. Ph.D. thesis, Université Paris 7 and INRIA (2010)
5. Alglave, J.: A Formal Hierarchy of Weak Memory Models. In: FMSD (2012)
6. Alglave, J., Kroening, D., Lugton, J., Nimal, V., Tautschnig, M.: Soundness of data flow

analyses for weak memory models. In: APLAS (2011)
7. Alglave, J., Maranget, L.: Stability in weak memory models. In: CAV (2011)
8. Alglave, J., Maranget, L., Sarkar, S., Sewell, P.: Fences in Weak Memory Models. In: CAV

(2010)
9. Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, M.: On the verification problem for

weak memory models. In: POPL (2010)
10. Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, M.: What’s decidable about weak

memory models? In: ESOP (2012)
11. Atig, M.F., Bouajjani, A., Parlato, G.: Getting rid of store-buffers in the analysis of weak

memory models. In: CAV (2011)
12. Bouajjani, A., Meyer, R., Moehlmann, E.: Deciding robustness against total store ordering.

In: ICALP (2011)
13. Burckhardt, S., Alur, R., Martin, M.K.: Checkfence: Checking consistency of concurrent

data types on relaxed memory models. In: PLDI (2007)
14. Cordeiro, L., Fischer, B.: Verifying multi-threaded software using SMT-based context-

bounded model checking. In: ICSE. pp. 331–340. ACM (2011)
15. Donaldson, A., Kaiser, A., Kroening, D., Wahl, T.: Symmetry-aware predicate abstraction

for shared-variable concurrent programs. In: CAV (2011)
16. Gupta, A., Popeea, C., Rybalchenko, A.: Threader: A constraint-based verifier for multi-

threaded programs. In: CAV (2011)
17. Huynh, T., Roychoudhury, A.: A memory model sensitive checker for C#. In: FM (2006)
18. Jin, H., Yavuz-Kahveci, T., Sanders, B.A.: Java memory model-aware model checking. In:

TACAS (2012)
19. Kuperstein, M., Vechev, M., Yahav, E.: Automatic inference of memory fences. In: FMCAD

(2010)
20. Kuperstein, M., Vechev, M., Yahav, E.: Partial-Coherence Abstractions for Relaxed Memory

Models. In: PLDI (2011)
21. Lamport, L.: How to Make a Correct Multiprocess Program Execute Correctly on a Multi-

processor. IEEE Trans. Comput. 46(7), 779–782 (1979)
22. Linden, A., P.Wolper: A verification-based approach to memory fence insertion in relaxed

memory systems. In: SPIN (2011)
23. Owens, S.: Reasoning about the Implementation of Concurrency Abstractions on x86-TSO.

In: ECOOP (2010)
24. Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO. In: TPHOL (2009)
25. Park, S., Dill, D.: An executable specification, analyzer and verifier for RMO. In: SPAA

(1995)
26. Sarkar, S., Sewell, P., Alglave, J., Maranget, L., Williams, D.: Understanding Power multi-

processors. In: PLDI (2011)
27. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. (1972)
28. Tarjan, R.: Enumeration of the elementary circuits of a directed graph. SIAM J. Comput.

(1973)
29. Yang, Y., Gopalakrishnan, G., Lindstrom, G.: Memory model sensitive data race analysis.

In: ICFEM (2004)

