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Abstract. Existing heap analysis techniques lack the ability to supply
counterexamples in case of property violations. This hinders diagnosis,
prevents test-case generation and is a barrier to the use of these tools
among non-experts. We present a verification technique for reasoning
about aliasing and reachability in the heap which uses ACDCL (a com-
bination of the well-known CDCL SAT algorithm and abstract interpre-
tation) to perform interleaved proof generation and model construction.
Abstraction provides us with a tractable way of reasoning about heaps;
ACDCL adds the ability to search for a model in an efficient way. We
present a prototype tool and demonstrate a number of examples for
which we are able to obtain useful concrete counterexamples.

1 Introduction

Heap-manipulating programs are notoriously hard to verify. Although there are
successful approaches to proving the safety of such programs, e.g. analyses based
on three-valued logic [1] and separation logic [2, 3], these analyses are primarily
concerned with proof generation and only very few provide a concrete counter-
model when a property is violated [4, 5]. Such countermodels can be used as
test cases that lead the program execution to the error, and hence, they are
invaluable in debugging and understanding the nature of the defect.

As properties of dynamically allocated data structures involve quantifiers,
inductive definitions and transitive closure, the concrete interpretation is im-
practical, and abstraction is used to give an approximate representation of sets
of concrete values, providing an effective way of dealing with such specifications.
In approaches based on abstract interpretation [6], the behaviour of a program is
evaluated over the abstract domain using an abstract transformer, which is iter-
ated until the set of abstract states saturates. The generated abstract fixed point
is an over-approximation of the set of reachable states of the original program.
Now, the difficulty is that, due to the precision loss involved in this analysis,
an abstract countermodel might be spurious, i.e. it can reach the error state ac-
cording to an abstract semantics, but not in the concrete semantics. Our goal
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is hence to compute a concrete countermodel, i.e. a witness for the refutation of
a property in the form of a concrete heap configuration that, starting from the
initial program state, will reach an error state according to concrete semantics.

Generation of concrete countermodels. We identify and address two spe-
cific issues hindering the generation of concrete countermodels.

The first issue is the loss of precision caused by join operators when reason-
ing about multiple execution paths. Join operations are well-known for losing
precision [7, 8]. One way to retain precision in such situations is to use disjunc-
tive (powerset) abstractions that express all the possible behaviours individually,
avoiding the need for an overapproximative join operator. However, disjunctive
abstractions increase space and time requirements exponentially. Thus, in order
to achieve scalability, shape analyses generally relinquish the precision offered
by the powerset domain in favour of more practical solutions. Options include
partially disjunctive heap abstractions [9], or special join operations for the sep-
aration logic domain which abstract information selectively [8]. However, due to
the precision loss, generating counterexamples is difficult or even impossible.

We propose an analysis capable of regaining just the right amount of precision
lost by the join without a powerset domain. This is achieved by exploiting recent
results on embedding abstract domains inside the Conflict Driven Clause Learn-
ing (CDCL) algorithm used by SAT solvers, a framework known as Abstract
Conflict Driven Clause Learning (ACDCL). As our main focus is on proving
aliasing and reachability properties about the heap, we instantiate ACDCL with
a heap domain. Our technique produces an abstract countermodel such that any
concrete instantiation of it will always provide a valid concrete countermodel.

The second scenario where concrete countermodels are difficult to generate
is in the presence of loops, when a widening operator may be required to acceler-
ate convergence by extrapolation. For programs with loops, we propose using a
combined approach based on loop unwinding and widening. Unwinding allows us
to construct concrete refutation witnesses for property invalidations that appear
within a certain number of loop unwindings. As this technique is inconclusive
if no such invalidations appear for the specified number of unwindings, widen-
ing will be used to prove safety in such situations. Any abstract countermodel
generated subsequent to widening may be spurious, i.e., may not correspond to
any concrete execution in the original program. The experience from bounded
model checking indicates that many bugs are found with a small number of loop
unwindings.

Contributions. Our contributions are summarised as follows:

– An abstract domain specialised for heap-manipulating programs that is used
to express aliasing and reachability facts about the heap.

– A verification technique for heap-manipulating programs that interleaves
model construction and proof generation by exploiting recent results on em-
bedding abstract domains inside the CDCL algorithm used by SAT solvers.
As precision loss caused by joins is recovered through decisions and learning,
our technique is capable of path-sensitive reasoning. Crucially, by generaliz-



ing causes of conflict, stronger facts can be learned, avoiding case and path
enumeration.

– In contrast to most other heap analysis techniques based on abstract in-
terpretation, our analysis produces abstract countermodels that are under-
approximations of concrete countermodels and can hence be used to diagnose
the property violation. We provide an algorithm for obtaining concrete in-
stantiations of our abstract countermodels.

– We present a prototype tool and demonstrate that we are able to obtain
useful concrete counterexamples for typical list-manipulating programs and
for benchmarks from SV-COMP’13 involving various kinds of lists and trees.

2 A Running Example

For illustration, let us consider the example in Fig. 1, with the corresponding
CFG in Fig. 2. Function running example takes as input two pointers x and y
to singly-linked lists, and removes the head of the list x and frees it.

Property 1. We instrument the code with the assumption at Line 7, stating
that y is non-dangling. At the end of the method we expect y not to be affected by
the memory deallocation at Line 12, and to remain non-dangling. Accordingly,
in the CFG representation, an error state is reached only if y is dangling at
the end of the program. The fact that the error location can be reached is
easily discovered by any heap verification technique (if x and y are aliases, the
memory location pointed to by y does get deallocated, leaving y dangling at
location N5). However, the join operation performed at location N5 will usually

1 typedef struct node {
2 int va l ;
3 struct node ∗n ;
4 } L i s t ;
5
6 void running example ( L i s t ∗x , L i s t ∗y ) {
7 assume ( ! Dangling ( y ) ) ;
8
9 i f ( x!= n u l l ) {

10 L i s t ∗aux = x ;
11 x = x−>n ;
12 f r e e ( aux ) ;
13 }
14
15 a s s e r t ( ! Dangling ( y ) ) ; // prop er t y 1
16 }

Fig. 1. Running example (with property 1)
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Fig. 2. CFG for the running example (with property 1)

void counterexample1 ( ) {

L i s t ∗x , ∗y ;
x = new( L i s t ) ;
y = x ;

running example (x , y ) ;
}

Fig. 3. A concrete counterexample for
property 1 of the running example

void counterexample2 ( ) {

L i s t ∗x , ∗y ;
y = new( L i s t ) ;
y−>n = n u l l ;
x = y ;

running example (x , y ) ;
}

Fig. 4. A concrete counterexample for
property 2 of the running example

lose the information about the two independent behaviours corresponding to
whether or not x is null . This is due to the fact that the most precise property
at the join point requires disjunction, and correspondingly a disjunctive domain.

We use a heap domain inside a Conflict-Driven Learning algorithm as used by
SAT solvers to construct a countermodel consisting of reachability and aliasing
facts without using a powerset domain. The generated abstract countermodel
consists of the facts x 6=null and x = y. A concrete instantiation of this counter-
model as a test case that triggers the property violation is given in Fig. 3. We
shall return with details on how the countermodel is generated for this example
in Sec. 5, after describing the analysis.

Property 2. Now, let us consider a slightly more involved heap property. As-
suming the existence of a path from y to null via field n at Line 7 in Fig. 1
(by replacing assume(!Dangling(y)) with assume(Path(y,null , n))), we want to
check that this path is preserved at Line 15 (assert(!Dangling(y)) is replaced by
assert(Path(y,null , n))). The abstract countermodel constructed by our tech-



datat := struct C {(typ v)∗}
e := v | v→f | new(C) | null
S := v:=e | v1→f :=v2 | free(v) | S1;S2 | if (B) S1 else S2 |

while (B) S | assert(φ) | assume(φ)
B := e1=e2 | e1 6=e2
A := ¬A | Path(v1, v2, f) | OnPath(v1, v2, v3, f) | Dangling(v)
φ := A | B | φ ∧ φ | φ ∨ φ

Fig. 5. Programming Language

nique is such that, in order for the error location to be reached, x must be on
the path from y to null . A concrete countermodel obtained by instantiating the
abstract countermodel is shown in Fig. 4.

3 Preliminaries

3.1 Programming Language

We use the sequential programming language in Fig. 5. It allows heap alloca-
tion and mutation, with v denoting a variable and f a pointer field. To simplify
the presentation but without loss of expressiveness, we allow only one-level field
access, denoted by v→f . Chained dereferences of the form v→f1→f2. . . are han-
dled by introducing auxiliary variables. The statement assert(φ) checks whether
the given argument holds for the current program state, whereas assume(φ) con-
strains the program state. Path(v1, v2, f) captures the fact that the heap location
referenced by pointer variable v2 is reachable from the memory location refer-
enced by v1 via the field f , whereas OnPath(v1, v2, v3, f) denotes the existence of
a memory location referenced by v3 on the path from v1 to v2 via the field f . The
predicate Dangling(v) indicates that a pointer v points to a non-allocated mem-
ory location, i.e. after a call to free(v), pointer v still points to the deallocated
memory location.

The predicates Path, OnPath, and Dangling are used to instrument the code
in order to prove the absence of memory safety errors such as null pointer deref-
erences, dangling pointer dereferences and double frees, for example.

3.2 Logical Encoding

We translate a program as defined in Sec. 3.1 to an equivalent logical formula.
This is done in the spirit of [10] via transforming the program into static single
assignment (SSA) form, where each variable is assigned to only once (auxiliary
variables are introduced to record intermediate values). This encoding is purely
syntactic and can be performed in linear time. It also makes explicit the state
dependency of heap accesses and updates. Finally, the formula is translated into
conjunctive normal form (CNF).



v1:=v2→f  M v1=sel(M, v2, f)
v1→f :=v2  M M ′=store(M, v1, f, v2)
Path(v1, v2, f)  M Path(M, v1, v2, f)
OnPath(v1, v2, v3, f)  M OnPath(M, v1, v2, v3, f)
Dangling(v)  M Dangling(M, v)
v:=new(C)  M M ′=new(M, v,C)
free(v)  M M ′=free(M, v)
assume(φ)  M φ
assert(φ)  M ¬φ

Fig. 6. Logical encoding

Most constructs such as sequential statements and if -else are encoded as
usual. while loops are unrolled up to a given bound. In Sec. 5 we give an example
how iterations beyond this bound can be translated as a fixed point construct
in order to prove unbounded safety. Unless otherwise stated, we assume in the
sequel that loops have been unwound, and hence, programs are loop-free. For
the heap-related statements the encoding rules are given in Fig. 6. We have to
capture the effects that an update to a dynamically allocated data structure has
on all the pointers referencing that memory location. To this end, we introduce
an explicit notion of heap, updated via operators store, new , free. More precisely,
if M denotes such a heap, then the encoding rules in Fig. 6 apply, where M ′ is
the updated heap.

Note that for assert(e), the negation of the asserted property is added to
the formula. Thus, an unsatisfiable formula corresponds to the scenario when
the assertion holds, whereas any model of the formula denotes a witness for the
invalidation of the asserted property.

Example 1. Our example in Fig. 1 is translated to the following formula:(
¬Dangling(M1, y1) ∧

Dangling(M2, y1)

)
∧

x1 6=null ∧ aux 1=x1 ∧
x2=sel(M1, x1, n) ∧
M2=free(aux 1)

 ∨ (x1=null ∧
M1=M2

)
Transformed into CNF, we have:

¬Dangling(M1, y1) ∧ (aux 1=x1 ∨ x1=null) ∧
(x2=sel(M1, x1, n) ∨ x1=null) ∧ (M2=free(M1, aux 1) ∨ x1=null) ∧

(x1 6=null ∨M1=M2) ∧ Dangling(M2, y1)

3.3 Concrete Semantics

We define the concrete semantics of a program in terms of the logical formula
obtained through the transformation described in the previous section.

Given the set PVar of pointer variables and Fld of pointer fields, a concrete
program state ρ is defined as a triple (Obj , P, L), where Obj denotes the set of all



Jv1 = v2Kρ ≡ L(v1)=L(v2)
JM ′=store(M, v1, f, v2)Kρ ≡ ρ |=c M =⇒

(Env,Obj, P/P [(L(v1), f) 7→L(v2)], L) |=c M
′

JM ′=MKρ ≡ ρ |=c M =⇒ ρ |=c M
′

JM ′=free(M, v)Kρ ≡ ρ |=c M =⇒ (Env,Obj\L(v), P, L) |=c M
′

JM ′=new(M, v,C)Kρ ≡ ρ |=c M =⇒
∃o 6∈Obj. (Env,Obj∪{o}, P, L/L[v 7→ o]) |=c M

′

Jsel(M, v, f)Kρ ≡ P (L(v), f)

JPath(M, v1, v2, f)Kρ ≡ L(v1)=L(v2) ∨

 ∃o∈Obj, v3 6∈PVar .P (L(v1), f)=o ∧
JPath(v3, v2, f)K(Obj, P, L/L[v3 7→o])∧

¬JPath(M, v2, v1, f)Kρ


JOnPath(M, v1, v2, v3, f)Kρ ≡

(
JPath(M, v1, v3, f)Kρ ∧ JPath(M, v3, v2, f)Kρ ∧

¬Path(M, v2, v3, f)Kρ

)
JDangling(M, v)Kρ ≡ @o∈Obj. L(v)=o

Fig. 7. Concrete semantics dedc

the allocated heap nodes plus a distinguished null node, P is the set of points-to
relations such that P ⊆ Obj×Fld×Obj , and L is the pointer variable labelling
function, L : PVar→Obj .

Before defining the concrete semantics in Fig. 7, we provide a consistency
relation ρ |=c M between a concrete program state ρ and an explicit heap con-
figuration M . The consistency relation states that the same reachability and
aliasing facts must hold in both M and ρ.

ρ |=c M ⇐⇒ ∀v, v1, v2∈PVar , f∈Fld .JPath(M,v1, v2, f)Kρ ∧
JOnPath(M, v1, v2, v, f)Kρ ∧ JDangling(M,v)Kρ

Memory allocation M ′=new(M, v,C) assigns a new heap node to the pointer
variable v, whereas the deallocation statement M ′=free(M, v) removes the deal-
located heap node from Obj. As the mapping of v to the deallocated node is
not removed from L, the variable points to an invalid memory location, i.e. v is
dangling. Note that the definition of Path excludes circular paths. We add the
predicate OnPath for notational convenience; it can be expressed with the help
of Path.

We refer to concrete program states (Obj, P, L) as structures Structs, and the
concrete domain of structures as (P(Structs),⊆,∪,∩). A structure ρ is called a
model of ϕ if JϕKρ = 1, and a countermodel if JϕKρ = 0.

4 Our Approach

4.1 Abstract Conflict Clause Learning (ACDCL)

Conflict Driven Clause Learning (CDCL) [11] is used by all industrially-relevant
propositional SAT solvers. It consists of two complementary phases, iterated un-
til either a model is found or a proof is generated. The first phase, model search,



Algorithm 1: ACDCL Algorithm

1 while true do
2 S = > ;
3 while true do /* PHASE 1: Model Search */

4 repeat /* deduction */

5 S ← S u ded(S);
6 until S=S u ded(S);
7 if S=⊥ then break ; /* conflict */

8 if complete(ded,S) then return (not ⊥,S); /* return SAT model */

9 S ← decision(S); /* make decision */

10 end
11 L ← analyse conflict(S) ; /* PHASE 2: Conflict Analysis */

12 if L=> then return (⊥,L); /* return UNSAT */

13 ded ← ded u dedL; /* learn: refine transformer */

14 end

tries to construct a model by using a partial assignment of truth values for the
propositional variables and extending it using deduction (unit clause propaga-
tion) and heuristic guesses. If this constructs a model, then it is returned and the
algorithm terminates. If not, a conflicting partial assignment is produced and is
passed, along with the reasons for each truth assignment, to the second phase.
In contrast to the model-theoretic approach of the first phase, the second phase,
conflict analysis, takes a proof-theoretic approach. The failed model search is
used to guide resolution to produce a clause that allows deduction to avoid the
conflict and others like it. If the learnt clause is empty, then the problem is
unsatisfiable and the algorithm terminates. The key to the algorithm’s effective-
ness is the synergy between the two approaches; failed model generation targets
the resolution so that high-value clauses are produced and these clauses in turn
strengthen deduction and target the heuristics to improve model generation.

An alternative view of CDCL is that the partial assignments are an over-
approximation of the space of full logical assignments [12]. Thus, the first phase is
application of an over-approximate abstract transformer plus extrapolation and
the second phase is using an underapproximation and interpolation to generalise
the reason for the conflict and increase the precision of the abstract transformer.
From this viewpoint it is possible to lift CDCL to give ACDCL [13], which applies
the approach but works over a variety of abstract domains (see Alg. 1).

To use ACDCL we first need a concrete domain (a lattice) and a transformer.
ACDCL determines whether the transformer projects all elements to ⊥. In the
case of propositional SAT, the concrete domain is the lattice of sets of truth
assignments and the transformer projects a set of assignments to the subset of
them that are models of the formulae. If this is ⊥ for all points, then the formulae
has no models (UNSAT ), otherwise it has models (SAT ). When applied to heaps,
the concrete domain is (P(Structs),⊆,∪,∩) and the transformer projects sets of



heaps to the subset of these that are models, thus proving the program safe (if
the transformer projects all sets to ⊥) or finding counterexamples.

The second component needed for ACDCL is an abstract domain and an
abstract transformer that over-approximates the concrete transformer. In the
case of propositional SAT solvers, the abstract domain is partial assignments
and the abstract transformer is unit propagation. In this work, Heapdom (see
Sec. 4.2) is an abstract domain capable of capturing reachability and aliasing
facts in the heap and ded (detailed in Sec. 4.3) is the abstract transformer.

The final components required are the completeness test and extrapolation
used in the model search phase and the generalisation function used in the
conflict analysis phase. Model search applies the abstract transformer until a
fixed point is reached (Lines 4 to 6). It then tests for completeness (Line 8). In the
case of propositional SAT solvers, this test is checking whether all variables have
been assigned. In this work, it is the procedure complete, detailed in Sec. 4.4. If
the abstract element is not complete (and not ⊥), then a heuristic guess is needed
to add new information (Line 9). Modern propositional SAT solvers use a variant
of the VSIDS heuristic, while the procedure decision given in Sec. 4.3 is used for
heaps. If the model search phase reaches a ⊥, then the conflict analysis phase is
run (Lines 11–13). This uses a generalisation function to underapproximate the
reasons for the conflict. In the case of propositional SAT solvers, this is usually
First-UIP based learning, while heaps use analyse conflict given in Sec. 4.3.

4.2 Abstract Heap Domain

The structure of our abstract heap domain Heapdom is given in Fig. 8. An ele-
ment S of Heapdom is a conjunction of predicates pred or their negation (literals
Heaplit), represented as a set. Heaplits are equalities/disequalities represent-
ing aliasing information, together with predicates describing reachability/valid-
ity facts about heap configurations (Path], OnPath] and Dangling]). Heapdom
forms a lattice 〈Heapdom,⊇,∪,∩,Heaplit , ∅〉. Note that the meet operation u is
the union of literals ∪, the join t is the intersection ∩, and inclusion v is ⊇. The
top element > is the empty set and bottom ⊥ is the set of all literals Heaplit .
For convenience, all inconsistent heap configurations will be projected to bot-
tom, e.g., pred ∧¬pred and Path](M,v1, v2, f)∧Dangling](M,v1) are ⊥.1 Note
that Heapdom is finite for programs with a finite number of pointer variables
and loops being unwound a finite number of times.

From a shape analysis point of view, the reachability predicate Path](M,x, y, n)

denotes a list segment from x to y, whereas Path](M,x, null, n) represents a full
list. When interested in heap reachability analysis, our heap abstract domain is
applicable to general heap-allocated data structures that go beyond linked lists.

Abstract semantics We define now the semantics of programs (as given in
Sec. 3) in our abstract heap domain. In Fig. 9, the abstract semantics is given

1 The intuition behind the latter case is that, in accordance with the semantics in
Fig. 7, reachability facts can only involve pointers to allocated heap locations.



Heapdom := P(Heaplit)
Heaplit := pred | ¬pred

pred := v=e | Path](M, v1, v2, f) | OnPath](M, v1, v2, v3, f) | Dangling](v)

e := null | v | sel ](M, v, f)
v ∈ Var , f ∈ Fld

Fig. 8. Abstract heap domain

in form of an abstract transformer ded : Heapdom → Heapdom that defines the
effect JpK] of the predicates p in the logical encoding on abstract heap states S.

Path, OnPath, Dangling and sel generate the corresponding abstract predi-
cates Path], OnPath], Dangling], and sel ]. An equality between heaps M = M ′

results in duplicating all facts for the new heap.

The transformers for new , free, and store are more complicated because they
involve the creation of a new heap M ′ that is a modified version of the previous
heap configuration M :

– new allocates a new memory location, disjoint from all the other allocated
memory locations. Accordingly, the abstract transformer (see Fig. 11) adds
a non-null, non-dangling pointer v (S2), generates disequalities between the
pointer to the newly allocated location and all the other non-dangling point-
ers (S3), and copies all known facts to the new heap (S1).

– free and store have to capture the effects of a strong update on the predicates
describing heap facts.2 Corresponding to the effects of a strong update, any
pointer variable that is an alias of v1 is pointing to the updated heap object in
the new heap, while any pointer variable disjoint from v1 points to the same
heap object as it did before the update. Thus, the abstract transformers must
capture the truth value of the predicates Path, OnPath and Dangling in the
updated heap in a precise manner. For this purpose, there are transformers
that define the effects of the memory update on the corresponding positive
literal, i.e. whether or not the literal preserves its truth value in the new
heap, as well as the effects on the negative literal. The abstract transformer
for the store operator is the most complex and is shown in Fig. 11. The free
operation is a simpler version of store (omitted here).
The copying of the facts from the previous heap configuration M that are
unaffected by the heap update to the new heap M ′ is performed by the
“heap copy” functions, also shown in Fig. 11. The hcp functions filter ab-
stract elements present in both S and S1 if the constraint c holds in S1

while also substituting the heap configuration from M to M ′. The ∈̂
operator in these definitions is given as c1 ∧ c2 ∈̂ S ≡ c1 ∈ S ∧ c2 ∈ S, and
c1 ∨ c2 ∈̂ S ≡ c1 ∈ S ∨ c2 ∈ S.

2 In shape analysis, a strong update to an abstract memory location overwrites its old
content with a new value, whereas a weak update adds new values to the existing
set of values associated with that memory location [1, 14].



Jv1 = v2K]S ≡ {v1 = v2}
Jv = sel(M, v, f)K]S ≡ {v = sel ](M, v, f)}
JM ′=store(M, v1, f, v2)K]S ≡ dedM′=store(M,v1,f,v2) (see Fig. 11)

JM ′=new(M, v,C)K]S ≡ dedM′=new(M,v,C) (see Fig. 11)

JM ′=free(M, v)K]S ≡ dedM′=free(M,v) (see text)

JM ′=MK]S ≡ {s[M/M ′] | s ∈ S}
JPath(M, v1, v2, f)K]S ≡ {Path](M, v1, v2, f)}
JOnPath(M, v1, v2, v3, f)K]S ≡ {OnPath](M, v1, v2, v3, f)}
JDangling(M, v)K]S ≡ {Dangling](M, v)}

Fig. 9. Abstract semantics: abstract transformer ded

The concretisation function γ that relates abstract states S with concrete
states ρ (cf. Fig. 7) is given in Fig. 10 with γ(S) = ∩s∈Sγs.

γv1=v2 ≡ {ρ | Jv1 = v2Kρ}
γv=sel](M,v,f) ≡ {ρ | Jv = sel ](M, v, f)Kρ}
γPath](M,v1,v2,f)

≡ {ρ | JPath(M, v1, v2, f)Kρ}
γOnPath](M,v1,v2,v3,f)

≡ {ρ | JOnPath(M, v1, v2, v3, f)Kρ}
γDangling](M,v) ≡ {ρ | JDangling(M, v)Kρ}

Fig. 10. Concretisation function γ

We now state the theorems that establish the soundness of the abstraction:

Theorem 1. The concrete domain P(Structs) and the abstract domain Heapdom

form a Galois connection, i.e. (P(Structs),⊆) −−−→←−−−α
γ

(Heapdom,⊇).

Theorem 2. The abstract semantics is a sound over-approximation of the con-
crete semantics, i.e. (dedc ◦ γ)(S) ⊆ (γ ◦ ded)(S).

The proofs establish the inclusion case by case over the structure of P(Structs)
and Heapdom, respectively dedc and ded .

4.3 ACDCL Instantiation

The ACDCL algorithm in Alg. 1 is instantiated using our abstract heap domain
as follows:

Deduction The abstract semantics in Sec. 4.2 defines an abstract transformer
ded : Heapdom → Heapdom, which can also be viewed as a set of deduction
rules. During model search ACDCL applies the abstract transformer ded to
deduce facts until saturation or detection of a conflict (the abstract value ⊥).



[DED−[NEW]]

S1 = hcp

({
v1=sel ](M, v2, f),Path](M, v1, v2, f),

OnPath](M, v1, v2, v3, f),Dangling](M, v)

}
, true , S,M,M ′

)
S2 = {v 6=null ,¬Dangling](M ′, v)}
S3 = {v 6=v′ | v′∈PVar ∧ v 6=v′ ∧ ¬Dangling](M ′, v) ∈ S}

dedM′=new(M,v,C)(S) = (S1 ∪ S2 ∪ S3)

[DED−[STORE]]

S1 = hcp pos({v3=sel ](M, v4, f)}, v1 6=v3, S,M,M ′)

S2 = hcp pos({¬(v3=sel ](M, v4, f))}, v1 6=v3 ∨ v2 6=v4, S,M,M ′)

S3 = hcp neg({¬(v3=sel ](M, v4, f))}, v1=v3 ∧ v2=v4, S,M,M ′)

S4 = hcp pos

 {Path](M, v3, v4, f)},
¬Path](M, v3, v1, f) ∨ ¬OnPath](M, v3, v4, v1, f) ∨ Path](M, v2, v4, f),
S,M,M ′


S5 = hcp neg

 {Path](M, v3, v4, f)},
Path](M, v3, v1, f) ∧OnPath](M, v3, v4, v1, f) ∧ ¬Path](M, v2, v4, f),
S,M,M ′


S6 = hcp pos({¬Path](M, v3, v4, f)},¬Path](M, v3, v1, f) ∨ ¬Path](M, v2, v4, f), S,M,M ′)

S7 = hcp neg({¬Path](M, v3, v4, f)},Path](M, v3, v1, f) ∧ Path](M, v2, v4, f), S,M,M ′)

S8 = hcp pos


{OnPath](M, v3, v4, v5, f)},

Path](M, v3, v4, f) ∧
(

¬Path](M, v3, v1, f) ∨
¬OnPath](M, v3, v5, v1, f) ∧ Path](M, v2, v5, f)

)
,

S,M,M ′


S9 = hcp neg


{OnPath](M, v3, v4, v5, f)},

¬Path](M, v3, v4, f) ∨
(

Path](M, v3, v1, f) ∧OnPath](M, v3, v5, v1, f)

∨ ¬Path](M, v2, v5, f)

)
,

S,M,M ′


S10 = hcp pos

 {¬OnPath](M, v3, v4, v5, f)},
¬Path](M, v3, v4, f) ∨ ¬Path](M, v3, v1, f) ∨ ¬Path](M, v2, v5, f),
S,M,M ′


S11 = hcp neg

 {¬OnPath](M, v3, v4, v5, f)},
Path](M, v3, v4, f) ∧ Path](M, v3, v1, f) ∧ Path](M, v2, v5, f),
S,M,M ′


S12 = hcp

({
v1=sel ](M, v2, f

′),Path](M, v1, v2, f
′),

OnPath](M, v1, v2, v3, f
′),Dangling](M, v)

}
, true , S,M,M ′

)
S13 = hcp pos({Dangling](M, v3)}, v1 6=v3, S,M,M ′)

S14 = {v2=sel ](M ′, v1, f)}

dedM′=store(M,v1,f,v2)(S) =

{
⊥ if (Dangling](M, v1) ∨ v1=null) ∈̂ S⋃

i=1..14 Si otherwise

Functions for copying heap facts:
hcp(S, c, S1,M,M ′) = {s[M/M ′] | s ∈ S ∩ S1 ∧ c ∈̂ S1}
hcp pos(S, c, S1,M,M ′) = {s[M/M ′] | s ∈ S ∩ S1 ∧ c ∈̂ S1}
hcp neg(S, c, S1,M,M ′) = {¬s[M/M ′] | s ∈ S ∩ S1 ∧ c ∈̂ S1}

Fig. 11. Abstract transformers



In addition to the abstract transformer ded , we make use of a transitive
closure transformer that infers all the possible new heap facts from existent
ones, e.g. it infers Path(M, v1, v3, f) from Path(M, v1, v2, f) and Path(M, v2, v3, f).
The transitive closure is also necessary to canonicalize abstract elements. This
is in particular important for checking whether an abstract value is equivalent
to ⊥ (which has multiple representations).

We can show that the abstract transformer ded we presented in Sec. 4.2 is
the best abstract transformer in our heap domain. However, this is not neces-
sary for the completeness and termination of the ACDCL algorithm: less precise
transformers can be used, as they will be subsequently refined through decisions
and learning. This is frequently a worthwhile trade-off for performance.

Maintaining the set of relevant decisions. During this propagation phase,
we maintain a set H (“hints”) of literals (Heaplit) for the benefit of the decision
heuristic explained in the next section. The set H consists of those literals that
appear in the transformer’s hypothesis and are not present in the current abstract
model S, and hence, they constitute the set of literals that guarantees that a
decision actually triggers a deduction. Hints are collected during the application
of the transformers based on the c, S1 arguments to the heap copy functions
(hcp, hcp pos, hcp neg):

extract hints(c, S1) = {h | h ∈ literals(c)\S1}

where

literals(c) =

 literals(c1) ∪ literals(c2) if c = (c1 ∧ c2)
literals(c1) if c = (c1 ∨ c2)
{s} if c = s

returns a set of literals in formula c that is sufficient to trigger a deduction: note
that in the case of disjunction in the hypothesis c, only one disjunct is added
in order to avoid unnecessary decisions. A consequence of this definition is that
whenever the completeness test (Line 8 in Alg. 1) fails, there must be at least
one hint in H .

Decisions Once no new information can be deduced through propagation, the
ACDCL algorithm makes a decision by guessing the truth value of a predicate
and adding it to the partial abstract model S. As explained above, we collect the
relevant potential decisions H during deduction in order to restrict the choices for
decisions. We may use any decision heuristic get a hint to return (and remove)
an element from H. A trivial option is to simply take the first element, but we
could also use elaborate ranking heuristics in order to prioritise certain literals.
The decision function (Line 9 in Alg. 1) adds the obtained literal to the abstract
model:

decisionH : Heapdom → Heapdom
decisionH(S) = S ∪ {get a hint(H )}



Conflict Analysis and Learning In the conflict analysis phase, the learning
function identifies the cause of the conflict:

analyse conflict : Heapdom→P(Heapdom)
analyse conflict(S) = (generalise ◦ complement)(decisions(S))

where decisions returns the set of decision literals in the current iteration of main
(outer) iteration of the ACDCL algorithm. As a learning heuristic, the conjunc-
tion of all the decisions leading to conflict is initially complemented according
to the complement function:

complement : Heapdom → P(Heapdom)
complement(S) = {{¬s} | s ∈ S}

Subsequently, the found cause of conflict is generalised using the generalise
function:

generalise : P(Heapdom)→ P(Heapdom)

Generalisation is important to efficiently prune the search space so as to avoid
case enumeration. Generalisation is based on heuristics (e.g. First-UIP in SAT
solving). The generalise function we have implemented is for example able to
perform the following generalisations:

– x=y =⇒ ∀f ∈ Fld.Path](x, y, f)

– ¬Path](M,x, y, f) =⇒ x 6=y.

The set L returned by analyse conflict is then used to build the learned
transformer dedL that is used to refine the abstract transformer ded (Alg. 1,
Line 13):

dedL : Heapdom → Heapdom
dedL =

⊔
`∈L ded `

meaning dedL(S) =
⋂
`∈L(S∪`). In our implementation, transformer refinement

is realised by conjoining the CNF formula corresponding to L with the formula.

4.4 Soundness and Completeness

Using various properties of the abstract domain, we show that the instantiation
of the ACDCL framework given here is a decision procedure (i.e. it is sound,
complete and terminating) for loop-free programs. Sketches of the heap-specific
parts of the proof are given here, the correctness of the framework is shown
in [13]. We recall the definition of γ-completeness:

Definition 1. A transformer ded is γ-complete at S ∈ Heapdom if
γ(ded(S)) = dedc(γ(S)).

The way we construct the set of relevant possible decisions H enables a simple
implementation of complete:

completeH(ded , S) ≡ (H = ∅)

which has the following properties:



Lemma 1. If completeH(ded , S) is true then ded is γ-complete at S.
If completeH(ded , S) is false then the decision function refines the partial ab-
stract model, S⊂decisionH(S).

Central to the correctness of the system is the invariant that ded is an over-
approximation of dedc and that each iteration of the outer loop strengthens it.
This can be proven inductively; Theorem 2 gives the base case and the inductive
step is a consequence of the next lemma:

Lemma 2. Given ded, an over-approximation of dedc, the second phase of the
algorithm gives a strictly stronger over-approximation of dedc.

Given ϕ, a loop-free program with a finite number of variables, termination,
soundness and completeness follow:

Theorem 3. Alg. 1 terminates.

Proof sketch. Heapdom is finite, and thus the application of ded will reach a
fixed point. Likewise, owing to the second part of Lemma 1, the main loop of
phase 1 will either exit as completeH(ded , S) is true or will eventually reach ⊥.
Finally, as Heapdom is finite, there are only a finite number of over-approximations
of dedc , so the invariant implies the main loop will terminate.

Theorem 4. If Alg. 1 returns (not ⊥, S) then ∀ρ ∈ γ(S).JϕKρ = 1

Proof sketch. The preconditions of the statement that returns not ⊥ include
completeH(ded , S) and S = ded(S). Using Lemma 1, γ(S) = dedc(γ(S)), thus all
elements of the concrete set are models. Note that γ(S) can contain an infinite
family of models; the next section shows how to produce counterexamples.

Theorem 5. If Alg. 1 returns ⊥ then ∀ρ ∈ Structs.JϕKρ = 0

Proof sketch. The only statement that returns ⊥ occurs when L=>, i.e. ded
u dedL is the function that maps all abstract elements to ⊥. Using the invariant
this is an overapproximation, thus dedc(>) = ⊥, thus there are no models of ϕ.

4.5 From Abstract to Concrete Countermodels

In Fig. 2 we provide a high-level overview of the algorithm for the generation of
concrete countermodels from abstract ones. Our goal is to compute a concrete
countermodel that contains only three types of elements: v1=v2, v=null and
v1=sel(M, v2, f). Initially, the abstract model is split into positive reachability-
based constraints (S1), and the rest of the abstract model (S2) (Lines 1 and 2,
respectively). Subsequently, S1 is used to infer candidate concrete models, which
are exhaustively generated in C such that each path constraint in S1 is concre-
tised to a length of at most l (Line 5). The inner loop (Lines 6–13) iteratively
attempts to find a valid concrete counterexample. In order to qualify, a candidate
must be consistent with the rest of the abstract constraints in S2. This consis-
tency check translates into a satisfiability call to our instantiation of ACDCL
(Line 10). If no candidate qualifies, the minimum length of the heap paths is
incremented and the process is reiterated with new candidates.



Algorithm 2: Concretisation of Abstract Countermodels

1 S1 ← {s|s∈S and (s = Path(M, v1, v2, n) or s = OnPath(M, v1, v2, v3, n))};
2 S2 ← S\S1 ;
3 l = 0;
4 while true do
5 C ← {c | c is a concrete model of S1 for paths of length ≤ l} ;
6 while C 6= ∅ do
7 π ← choose a model from C;
8 C ← C \ π;
9 ∀si∈(π ∪ S2).φ←

∧
i si ;

10 if φ is SAT then
11 return π;
12 end

13 end
14 l← l + 1

15 end

Theorem 6. Given an abstract counterexample (an abstract element different
from ⊥ at which ded is γ-complete, then Alg. 2 always terminates with a finite
concrete countermodel.

Proof sketch. A partial ordering of the current variables can be computed such
that Path(M, v1, v2, n)⇒ v1�v2 and OnPath(M, v1, v2, v3, n)⇒ v1�v3�v2. It is al-
ways possible to generate a countermodel from this ordering without introducing
any auxiliary variables. As S1∪S2 6=⊥, there must exist one such countermodel
that satisfies both S1 and S2.

5 Experiments

We have implemented the ACDCL instantiation with the Heapdom domain de-
scribed in Alg. 1 in a prototype solver and connected it to the Model Checker
CBMC 4.6. The source code of the prototype tool and the benchmarks are avail-
able online.3 The prototype was subsequently used to verify memory safety and
reachability properties for some typical list-manipulating programs for singly-
linked lists, e.g. filter, find, bubble sort, and benchmarks from the SV-COMP’13
list-properties and memsafety-ext sets.

In addition to checking memory safety, i.e. absence of null or dangling pointer
dereferences, we have also added reachability assertions, e.g. the reachability
predicate Path(x, y, n) denotes a list segment from x to y, and Path(x, null, n)

represents a full list.

1. Countermodel construction. In order to test the soundness of the tool
and its capacity to construct witnesses for property refutation, we applied it

3 http://www.cprover.org/svn/cbmc/branches/ESOP2014-heap



safe unsafe
Benchmark loc cls t cls t

bubble sort∗ 40 728 0.86 732 10.1
concat∗ 24 45 0.08 45 0.08
copy∗ 40 159 0.20 158 1.50
create∗ 27 100 0.15 100 0.15
filter∗ 42 259 0.68 259 0.55
find∗ 23 47 0.09 35 0.08
insert∗ 17 18 0.13 16 0.15
reverse∗ 20 81 0.07 83 0.08
traverse∗ 15 16 0.08 18 0.07

alternating list 65 278 0.21 282 0.28
list flag 62 244 0.46 246 0.57

safe unsafe
Benchmark loc cls t cls t

list 60 294 1.57 296 1.14
simple built from end 34 124 0.17 120 0.16
simple 45 157 0.18 157 0.17
splice 89 474 0.33 478 0.55

dll extends pointer 64 302 0.29 308 0.79
skiplist 2lvl 91 520 t.o. 514 4.87
skiplist 3lvl 105 722 t.o. 726 15.5
tree cnstr 85 942 3.31 922 2.56
tree dsw 117 1037 2.43 984 3.24
tree parent ptr 95 844 0.43 811 45.9
tree stack 93 1413 0.50 1394 t.o.

Table 1. Experimental results: lines of code (loc), clauses (cls) and analysis time (t,
in seconds) for safe and unsafe versions of the benchmarks; timeout 15 minutes (t.o.).
All experiments were performed with two loop unwindings.

to safe and unsafe, i.e. faulty, versions of our benchmarks (with loops unwound
twice), followed by manually inspecting the countermodels generated for the
unsafe versions. The results of these experiments are given in Table 1. Both the
safe and unsafe versions of each program are instrumented with memory safety
assertions. Those marked with a * have additional reachability assertions.

Example 2. We describe how countermodel construction proceeds for our run-
ning example in Fig. 1. Recall the corresponding logical encoding in Sec. 3.2.

Model search (1) After the first propagation, the partial abstract model con-
sists of the elements ¬Dangling(M1, y1) and Dangling(M2, y1), representing neither
a conflict, nor a complete countermodel. Thus, a decision constrains x1 to be not
null , and the model search loop is reiterated. This time, the abstract transformers
for aux1=x1, x2=sel(M1, x1, n) and M2=free(M1, aux1) are applied. As the appli-
cation of M2=free(M1, aux1) is imprecise (no aliasing information for x1 and y1 is
available), a second decision is made assuming that y1 is not reachable from x1,
i.e. ¬Path(M1, x1, y1, n). Consequently, a new application of M2=free(M1, aux1)

will preserve the non-dangling knowledge about y1 from M1 to M2, resulting in
the conflict ¬Dangling(M2, y1) and Dangling(M2, y1).

Conflict analysis (2) The cause of conflict is x1 6= null ∧ ¬Path(M1, x1, y1, n).
Hence, one possible clause to be learned is x1=null ∨ Path(M1, x1, y1, n). As we
want to avoid case enumeration, we generalise the cause of conflict. For example,
the fact that x1 and y1 are not aliases is more general than ¬Path(M1, x1, y1, n),
i.e. ¬Path(M1, x1, y1, n)⇒ x1 6= y1.4 Thus, we learn x1=null ∨ x1=y1 and restart
the model search phase.

Model search (3) After a decision x1 6= null , the abstract element x1=y1 is
added to the abstract model and M2=free(M1, aux1) is now complete. Thus, the

4 A heap path between two pointer variables may be empty (cf. Fig. 7).



abstract transformer passes the completeness test, and the abstract counter-
model {x1 6= null , x1=y1} is generated.

Concrete countermodel generation (4) Fig. 3 shows a test case triggering
the property violation obtained from the abstract countermodel using Alg. 2.

2. Safety proof generation. When failing to construct a concrete refutation
witness after a bounded number of unwindings, a safety proof is attempted by
applying a fixed point computation. This computation makes use of a widening
operator that loses information about individual points-to facts by generalising
them to reachability facts, e.g. y=sel(M,x, n) is generalised to Path(M,x, y, n).

We do not detail the fixed point computation and the widening operator as
they are both rather standard (in particular in the spirit of [15]). In order to
investigate feasibility of our approach, we have experimented with the backend
solver of our prototype by trying simple list-manipulating programs like filter,
concat, copy, and reverse on singly-linked lists, where we computed invariants
for each loop.

For instance, for the concat example in Fig. 12, we replace the while loop
by the invariant Path(x, curr, n) ∧ curr → n = null resulting from the fixed point
computation with widening. The transformer for the store curr → n = y joins
this information yielding Path(x, y, n), thus proving safety.

6 Related Work

ACDCL. We build on previous results on embedding abstract domains in-
side the Conflict Driven Clause Learning (CDCL) algorithm used by modern
SAT solvers in a framework known as Abstract Conflict Driven Clause Learning
(ACDCL) [13]. Other promising instances of this framework include a bit-precise
decision procedure for the theory of binary floating-point arithmetic [16].

void concat ( L i s t ∗x , L i s t ∗y ) {
L i s t ∗ curr ;
assume ( ! Path (x , y ) ) ;
i f ( x==n u l l ) x = y ;
else {

curr = x ;
while ( curr−>n != n u l l ) curr = curr−>n ;
curr−>n = y ;

}
a s s e r t ( Path (x , y ) ) ;

}

Fig. 12. List concatenation



The ACDCL framework enables the design of property-driven analyses (anal-
yses that propagate facts starting with states exhibiting a certain property of
interest, e.g. backward under-approximation). The model search phase of the
ACDCL framework exhibits the property-driven nature of backward analysis,
while using transformers that are forward in nature. This differs from most
abstract-interpretation-based analyses for heap-manipulating programs [8, 17, 1,
9], which perform exhaustive forward propagation.

Model vs. proof generation. Among the successful approaches for proving
safety of heap-manipulating programs, the most prominent ones are based on
three-valued logic [1] and separation logic [2, 3]. Although the majority of these
analyses are mainly concerned with proof generation and do not construct wit-
nesses for the refutation of a property [8, 17, 9], there are recent advances in
diagnosing failure with the purpose of refining shape abstractions [4, 5]. These
works start with failed proofs, and subsequently try to find concrete counter-
models from possible spurious abstract ones. Thus, the proof generation phase
is independent from model construction. The same remark applies to an approach
designed to find memory leaks in Android applications [18], which answers reach-
ability queries by refining a points-to analysis through a backwards search for
a witness. In contrast, the ACDCL framework, and hence our instantiation, ex-
ploits the interleaving of model construction and proof generation to mutually
support model search and conflict analysis.

Decidable logics. Recently, several decidable logics for reasoning about linked
lists have been proposed [19–23]. Piskac et al. provide a reduction of decidable
separation logic fragments to a decidable first-order SMT theory framework [20].
A decision procedure for a new logic that is an alternation-free sub-fragment of
first-order logic with transitive closure and no alternation between universal and
existential quantifiers is described in [19]. While these works design decision pro-
cedures for handling quantified constraints, we use an abstract domain enabling
us to employ the ACDCL framework. As a direct implication, we do not have
a separation between propositional and theory-specific reasoning. Thus, theory-
specific facts can be learned during conflict analysis, which may result in better
pruning of the search space.

7 Conclusions

We have presented a verification technique for reasoning about aliasing and
reachability in the heap which uses ACDCL to perform both proof generation
and model construction. Proof generation benefits from model construction by
learning how to refine the abstract transformer, and in turn, it assists in pruning
the search space for a model. The ACDCL framework was instantiated with a
newly designed abstract heap domain. From a shape analysis perspective, this
domain allows expressing structural properties of list segments, whereas in a
more general context of reachability analysis it can denote reachability facts
regardless of the underlying data structure.
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