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Abstract. Statistical Fault Localisation (SFL) is a widely used method
for localizing faults in software. SFL gathers coverage details of passed
and failed executions over a faulty program and then uses a measure to
assign a degree of suspiciousness to each of a chosen set of program enti-
ties (statements, predicates, etc.) in that program. The program entities
are then inspected by the engineer in descending order of suspiciousness
until the bug is found. The effectiveness of this process relies on the qual-
ity of the suspiciousness measure. In this paper, we compare 157 mea-
sures, 95 of which are new to SFL and borrowed from other branches of
science and philosophy. We also present a new measure optimiser Lexg,
which optimises a given measure g according to a criterion of single
bug optimality. An experimental comparison on benchmarks from the
Software-artifact Infrastructure Repository (SIR) indicates that many
of the new measures perform competitively with the established ones.
Furthermore, the large-scale comparison reveals that the new measures
LexOchiai and Pattern-Similarity perform best overall.

1 Introduction

Software engineers use fault localization methods in order to focus their debug-
ging efforts on a subset of program entities (such as statements or predicates)
that are most likely to be causes of the error. Since the attempts to reduce
the number of faults in software are estimated to consume 50 − 60% of the de-
velopment and maintenance effort [5], accurate and efficient fault localization
techniques have the potential to greatly reduce the overall effort of software
development.

In statistical fault localisation (SFL), statistical information on passing and
failing executions of a faulty program is gathered and analysed [1, 3, 13–15, 32].
Based on the resulting data, SFL assigns a degree of suspiciousness to each mem-
ber of a chosen set of program entities of the program under test. Essentially, the
degree of suspiciousness depends on the number of appearances of this entity in
the passing and failing executions. There are many approaches to computing this
degree, and naturally, entities that cause the error are hoped to have the highest
degree of suspiciousness. The program entities are inspected by the user in de-
scending order of suspiciousness until the bug is found. SFL has been considered
a highly effective and efficient way for localising faults in software [30].
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Our contributions The contributions of this paper are as follows:

1. We introduce and motivate 95 new measures (borrowed from other areas
of science and philosophy) to SFL. These measures are divided into five
categories: similarity, prediction, causation, confirmation and custom.

2. We formally prove that over 50 measures are equivalent to others for the
purpose of ranking suspicious entities.

3. We experimentally compare the measures on the Siemens test suite along
with five larger programs: space, grep, gzip, sed and flex3. We show that
many of the new measures perform competitively, with an optimised version
of PatternSimilarity outperforming all pre-existing SFL measures on the
benchmarks.

4. We introduce a new measure-optimising scheme Lex g and show LexOchiai

outperforms all other measures on the benchmarks.

Along with providing two new best performing measures, to the best of our
knowledge, this research provides one of the largest scale SFL studies to date in
three ways. Firstly, it contains the largest experimental study over C programs in
SFL, consisting of the largest number (and largest sized) C programs. Secondly,
it introduces and compares the largest number of measures. Thirdly, it contains
results for the largest number of ranking equivalence proofs (see [20]).

Related work Research in SFL is largely driven by the construction or intro-
duction of new suspiciousness measures. Experimental results assess the quality
of measures by applying them to known benchmarks [1, 2, 16, 18, 20, 24, 25, 29].
Theoretical results have included formal properties and equivalence proofs of
different measures [19,20,30].

A similar paper to ours is the paper by Lucia et al. [18], which compares
association measures on C and Java Programs. However, Lucia et al. conclude
that there is no measure which is clearly the best, whereas we show our new
measure LexOchiai is a robust overall top performer. Another similar paper is
the paper by Naish [20], who set the standards for proving equivalences between
suspiciousness measures, discuss optimal measures and compare a (smaller) set
of measures against a (smaller) set of benchmarks.

A recent paper by Yoo et al. [31] analyses fault localisation in conjunction
with prioritisation. The problem studied in [31] is deciding the best course of
action when a fault is found. Their approach is complementary to ours (and
applied to a similar set of benchmarks) and can also be applied in conjunction
with the measure we construct in this paper.

Xie et al. develop a theoretical approach to proving that some measures are
better than others [30]. However, their proof relies on several critical simplifying
assumptions (in particular, the bug must be contained in a single line of code
or block). Bugs that are more realistic often break this assumption, invalidating
the proof on realistic examples. We impose no such theoretical restrictions.

3 From the Software Artifact Infrastructure Repository at http://sir.unl.edu.



On a more general level, Parnin et al. [21] raise the question of whether fault
localisation techniques are useful at all. The paper compared the efficiency of
fault localisation with and without the automated tool Tarantula [13]. They
reported that experts are faster at locating bugs using the tool for simple pro-
grams, but not for harder ones. However, their study is limited in its ability
to generalize, as their experiments included only two small, single-bug programs
(Tetris and NanoXML, 2K/4K LOC respectively) and is limited to the Tarantula
tool.

Paper structure The rest of the paper is organised as follows. In Section 2, we
present the informal ideas and formal definitions of SFL and discuss the 62
previously used suspiciousness measures. In Section 3, we discuss 95 measures
that have not yet been applied to SFL and demonstrate that these new measures
are well suited to SFL. We briefly outline proofs of equivalence of many of these
measures when applied to SFL. Section 4 presents the experimental results of
applying the non-equivalent measures to the benchmarks. We summarize our
results in Section 5. Due to lack of space, the complete ranking equivalence
proofs, results tables and tables containing definitions of measures are only in
the extended version of this paper. The extended paper, the data set and the
code used to perform the experiments are available from http://www.cprover.

org/sfl/.

2 Definitions and Notations

In this section, we introduce the basic definitions and notations of SFL, and
survey the established measures. We also present a small motivating example.

2.1 Definitions

Let a program under test (PUT) P be an ordered set of program entities, such
that P = 〈C1, . . . , Cn〉, where n ∈ N. Program entities can be statements,
branches, paths, or blocks of code (see, for example, [14, 16, 28]). Let a test
suite T be an ordered set of test cases T = 〈t1, . . . , tm〉, where m is the size
of the test suite. Each test case ti is a Boolean vector of length n (where n is
the number of program entities) such that ti = 〈bi1, . . . , bin〉, where bij ∈ {0, 1},
where we have bij = 1 iff Cj is covered by ti. We represent each program entity
Ci by the set of test cases where Ci is 1. The last program entity Cn is the error
statement E, which is 1 if the test case fails and 0 if it passes. A convenient
way to store this information is using coverage matrices, in which the i-th row
of the j-th column represents whether test case ti covers program entity Cj , an
example of which is given in Table 1.

For each program P, test suite T and program entity Ci we can construct
this program entity’s contingency table [23]. This table can be symbolically rep-
resented as a vector of four elements denoted as 〈aief , aiep , ainf , ainp〉, where aief is

the number of failing test cases in T that cover Ci, a
i
ep is the number of passing



test cases in T that cover Ci, a
i
nf is the number of failing test cases in T that

do not cover Ci and ainp is the number of passing test cases in T that do not
cover Ci. For each program entity, we can calculate its contingency table for a
test suite. See Table 2 for an example. We let Fi = aief +ainf , Pi = aiep +ainp and
Ti = Fi + Pi. For each test suite and Ci and Cj , Fi = Fj and Pi = Pj . When
the context is clear we drop numerical indices, writing, for instance, C and aef
instead of Ci and aief .

A suspiciousness measure m maps a contingency table 〈aief , aiep , ainf , ainp〉
to a real number [20]. Roughly speaking, for a test suite and faulty program,
the higher the output of the measure the more suspicious the program entity Ci

is assumed to be with respect to containing a bug. The output of each suspi-
ciousness measure is the suspiciousness score that is assigned to each program
entity (we also say that a program entity is ranked according to its suspicious-
ness score). The program entities are then ordered according to their degree of
suspiciousness and are investigated in descending order by the user until the bug
is found.

A probability space for each test suite is defined as follows. Given a program P
and test suite T, we identify a probability space (Ω,S, Pr), where the sample
space Ω = {t1, . . . , tn} is the set of test cases, the set of events S is the power-set
of the set of program entities, where Pr: S → [0, 1] is a probability function with
the usual signature. Assuming the axioms and language of classical probabilistic
calculus and given the definitions of aief , a

i
nf , a

i
ep , a

i
np above, we can identify

Pr(Ci ∩ E), Pr(¬Ci ∩ E), Pr(Ci ∩ ¬E) and Pr(¬Ci ∩ ¬E) with
ai
ef

Ti
,

ai
ep

Ti
,

ai
np

Ti

and
ai
nf

Ti
respectively. Using probabilistic calculus, this is sufficient to generate

the other probabilistic expressions we need. Probabilistic expressions may also
be translated into algebraic form in the obvious way. For example, P (E|Ci) is

equal to
ai
ef

ai
ep+ai

ef

.

Naish’s notion of single-bug optimality [19] is based on the observation that
if a program contains only a single bug, then all failing traces cover that bug.
Formally, a measure m is single-bug optimal if (1) when aef < F , the value
returned is less than any value returned when aef = F and (2) when aef = F
and anp = k, the value returned is greater any value returned when anp < k [19].

We use Naish’s notion of ranking equivalence between suspiciousness mea-
sures, defined as follows. Two suspiciousness measures m1 and m2 are said to be
monotonically equivalent if (m1(x) < m1(y))⇔ (m2(x) < m2(y)) for all vectors
x and y. Many suspiciousness measures turn out to be monotonically equivalent
on domains in which the measures share the same program and test suite [20]. In
other words, they are monotonically equivalent on domains in which the number
of failing test cases F and the number of passing test cases P is the same for the
vectors x and y. This property is called ranking equivalence [20].



2.2 Motivating Example

In this section, we present a simple motivating example to illustrate a typi-
cal instance of SFL. Consider the faulty program minmax.c in Figure 1 (taken
from [11]). The program has six program entities 〈C1, C2, C3, C4, C5, E〉, where
E is the specification. The program fails to satisfy the specification least ≤ most .

int main ( ) { // C1
int inp1 , inp2 , inp3 ;
int l e a s t = inp1 ;
int most = inp1 ;

i f ( most < inp2 )
most = inp2 ; // C2

i f ( most < inp3 )
most = inp3 ; // C3

i f ( l e a s t > inp2 )
most = inp2 ; // C4 (Bug ! )

i f ( l e a s t > inp3 )
l e a s t = inp3 ; // C5

a s s e r t ( l e a s t <= most ) ;
// E ( S p e c i f i c a t i o n )

}

Fig. 1: minmax.c

The reason for the failure is the
bug at C4, which should be an as-
signment to least instead of an as-
signment to most . To locate the fault,
we collected coverage data from ten
test cases t1 to t10. Three of them
fail and seven pass. The coverage
matrix for these test cases is given
in Table 1. We compute contingency
tables for each program entity us-
ing the coverage matrix and give the
table for C4 as an example (Ta-
ble 2). We then apply a suspicious-
ness measure to assign a degree of
suspiciousness to each of the program
entities. We use the Wong-II mea-
sure [29] aef − aep as a simple exam-
ple.

C1 C2 C3 C4 C5 E

t1 1 0 1 1 0 1
t2 1 0 0 1 1 1
t3 1 0 0 1 0 1
t4 1 1 0 0 0 0
t5 1 0 1 0 0 0
t6 1 0 0 0 1 0
t7 1 0 0 1 1 0
t8 1 0 0 0 0 0
t9 1 1 0 0 1 0
t10 1 1 1 0 0 0

Table 1: Coverage matrix for minmax.c

E ¬E
C4 3 1
¬C4 0 6

Table 2: Contingency table for C4

The user then investigates the program entities in descending order of suspi-
ciousness until the fault is found (ignoring E). In this example, Wong-II ranks
C4 the highest with a score of 2 and thereby successfully identifies the bug within
the most suspicious program entity.



2.3 Established Measures

We include 62 measures selected by Naish [20] and Lo [18] in our compari-
son. To motivate many of these measures to SFL, Naish et al. discuss desir-
able formal properties [19]. One important property that has been discussed is
monotonicity : for a fixed number of passed and failed tests, a measure should
strictly increase as aef increases and strictly decrease as aep decreases [13,19,30].
Examples of some prominent measures from [20] are Wong-I = aef , Wong-II
= aef − aep , Naish = aef − aep

aep+anp+1 , Zoltar =
aef

aef +anf +aep+
10000anf aep

aef

, Jac-

card =
aef

aef +anf +aep
, Ochiai =

aef√
(aef +anf )(aef +aep)

[1], Tarantula =
aef

aef +anp
[13]4,

Kulczynski-II = 1
2 (

aef

aef +anf
+

aef

aef +aep
), and M2 =

aef

aef +anp+2(anf +aep)
.

3 New SFL Measures

In this section we introduce 95 new suspiciousness measures that have not yet
been applied in SFL. We organise them into five different groups: similarity,
predictive, causal, confirmation and custom measures. Their application to SFL
is motivated in terms of different proposed criteria about what a suspiciousness
measure should exactly capture. We discuss such criteria at the beginning of
each paragraph and the reader is referred to the full paper for the definitions
of the new measures. We identify over 50 measures which are ranking equiv-
alent and summarise interesting monotonic simplifications of some measures.
The introduction of many measures has the benefit of consolidating the results
concerning top performing measures. Furthermore, we introduce a new measure
optimiser, which we later show can be used to construct the best performing
measure on our benchmark suite.

3.1 New SFL measures from the literature

Similarity measures. The first proposed criterion is that a suspiciousness mea-
sure should measure how similar a program entity C is to the error E. This
motivates the use of similarity measures in SFL and has been discussed in
the literature [19, 20]. Indeed, many of the measures of the previous section
are similarity measures (such as Jaccard) that were originally used in differ-
ent domains. The new similarity measures we include in our experiments are
available in the survey of [4] and are as follows: 3w-Jaccard, Baroni-Urbani-
Buser-I and II, Braun-Blanquet, Bray-Curtis, Cosine, Cole, Chord, Dennis, Dis-
persion, Driver&Kroebner, F&M, Faith, Forbes-I, Forbes-II, Fossum, Gower,
Gower-Legendre, Hellinger, Johnson, Lance-Williams, MCconnaughey, Michael,
Mountford, Nei-Li, Otsuka, PatternSimilarity, ShapeSimilarity, SizeSimilarity,
Vari, Simpson, Sorgenfrei, and Sokal&Sneath-I, II, III, IV, V and Tarwid.5 The

4 Strictly, this is an algebraic simplification of the original Tarantula measure.
5 In some cases, a distance measure m has been converted to a similarity measure for

our purposes, using the convention of −distance ≡ similarity.



measure PatternSimilarity = − 4(aepanf )
(aef +aep+anf +anp)2

, which is used in clustering [4],

is of particular interest and we discuss it later in more detail.

Prediction measures. The second proposed criterion is that a suspiciousness
measure should measure the degree by which the execution of a program entity
C predicts the error E. This motivates the use of what we loosely call pre-
diction measures. Many of these measures are commonly used in epidemiology
and diagnosis to estimate how well a test result predicts a disease or successful
treatment [8,10]. The prediction measures we include in our experiments are as
follows: Positive predictive value (PPV) = P (E|C), Negative predictive value
(NPV) = P (¬E|¬C), Sensitivity = P (C|E), Specificity = P (¬C|¬E), Youden’s
J, Positive Likelyhood, Tetrachoric, Relative risk, Z-ratio, Peirce, Pearson-I, II
and III [23], Pearson-Heron I and II, Anderberg-II, Tanimoto, Mutual Info, Simp-
son, Gilbert&Wells and Goodman&Kruskal (see the surveys [4, 8, 10,26]).

Causal measures. The third proposed criterion is that a suspiciousness measure
should measure the degree by which the execution of a program entity C has
the power to cause the error E. This motivates the use of measures of causal
power/strength to SFL. Such measures are principally found in the domain of
philosophy of science [9] and artificial intelligence [22] and many of their formal
properties have been shown [9]. Examples of causal measures are Suppes =

P (E|C)−P (E|¬C), Eels = P (E|C)− P (E), Lewis = log P (E|C)
P (E|¬C) , Fitelson =

log P (E|C)
P (E) [9]. The other causal measures considered are: Pearl-I, II, III and IV

Fitelson II and III Korb I, II and III, Cheng and Good.

Confirmation Measures. The fourth proposed criterion is that a suspiciousness
measure should measure the degree by which the execution of a program entity H
is a hypothesis which explains the error E. This motivates the use of measures
of explanation (sometimes called evidential/inductive/confirmation measures) to
the domain of SFL. Such measures have been developed in the domain of phi-
losophy of science [12] and many of their formal properties have been proven [7].
Some example confirmation measures are Earman = P (H|E) − P (H), Joyce

= P (H|E) − P (H|¬E), Milne = log P (H|E)
P (H) , and Good-II = log P (H|E)

P (H|¬E) [12].

The other measures considered are Carnap-I and II, Crupi, Rescher, Kemeny,
Popper-I, II, and III, Levi, Finch-I, Gaifman and Rips.

3.2 Ranking equivalent measures

Naish proved that many different suspiciousness measures are in fact equivalent
for the purposes of ranking suspiciousness entities [20]. We extend Naish’s work
by providing many of the remaining equivalence proofs (over 50) for the measures
in this paper (see the full paper for the proofs). Proving ranking equivalences is
essential in determining a maximal set of inequivalent measures to investigate
and allows us to ignore the remainder in experimentation. Furthermore, using
equivalence proofs we can find some elegant monotonic simplifications which



identify the underlying “essence” of some of the new suspiciousness measures,
which may be used to guide future development. For instance, of our new mea-
sures (established measures are bracketed), we have found that Sensitivity is
ranking equivalent to aef (as is Wong-I), Specificity to anp , PPV to

aef

aep
(as is

Tarantula), NPV to
anp

anf
, YulesQ to

aef anp

aepanf
, F1 to

aef

aep+anf
(as is Jaccard), SizeS-

imilarity to aef -aep (as is Wong-II) and PatternSimilarity to −anf aep .

3.3 A new custom measure

We propose the fifth criterion for suspiciousness measures: that a measure should
be tailored to particular features concerning software errors (similar ideas had
been proposed in [20] and Wong-III [29]).

We motivate our measure as follows. Firstly, following work by Naish [20],
we state that our measure should be single bug optimal as defined in Section 2.1,
because of deeper reasoning pertaining to Occam’s razor. That is, we think the
simplest hypothesis for explaining the error should be investigated first, and as
the simplest hypothesis is that the program contains a single bug, the measure
should be single bug optimal.

Secondly, although we state that the measure should be single bug optimal,
we diverge from Naish [20] insofar as we do not make the single fault assumption
– that the program contains only a single bug. This is because there exist pro-
grams with multiple bugs and our goal is to construct a measure that provides a
complete solution to the problem of SFL. Consequently, it still remains to work
out how to rank the suspiciousness of entities when no bug is covered by all bad
traces. In this case, the suspiciousness of each program entity is determined by
an existing measure g which is chosen on its ability to deal with multiple bugs
and by success in experimentation. We account for this in the second condition
of our measure below. For a measure g, we define our measure optimising scheme
Lex g as follows. Let x be the vector 〈aef , aep , anf , anp〉. Then,

Lex g(x) =

{
anp + 2 if aef = F

g(x) otherwise.
(1)

In Equation 1, g stands for an internal measure, and can represent any measure
appropriately scaled from 0 to 1. The intuition behind our optimising scheme is
that g should rank each program entity in terms of suspiciousness as it usually
does, except in the case where that entity is covered by every failing trace, in
which case it should be investigated by the user as a matter of top priority.
Based on its performance in our experiments, we choose Ochiai as the internal
measure g, hence called LexOchiai .

The following theorem states the optimality of our scheme (see the full paper
for the proof).

Theorem 1. Lexg is single bug optimal.

Lex g can be considered as an optimising scheme which “converts” an appro-
priately scaled measure g into a single-bug optimal measure. The name of our



scheme is derived from its underlying idea — to lexically order two different
classes of entities in terms of suspiciousness.

4 Experiments

In this section we describe the results of empirical evaluation of the measures.
First we describe the experimental setup; then, we discuss our two means of
assessment – an average scoring method and a Wilcoxon rank sum significance
test. We conclude the section with the presentation and the analysis of the
results.

Program Vs LOC TC FTC PE FPV Program Vs LOC TC FTC PE FPV

tcas 41 173 1608 38 53 1.61 replace 32 563 5542 96 218 1.79

schedule 9 410 2650 80 146 1.45 gzip 3 7996 214 126 1223 3.33

schedule2 10 307 2710 27 126 1.10 space 38 9126 13585 1439 976 5.21

tot info 23 406 1052 83 116 1.04 sed 2 11990 360 210 2378 5.50

print tks 7 563 4130 69 179 1.14 grep 3 13229 750 304 1785 17.33

print tk2 10 508 4115 206 196 1.00 flex 2 14230 567 71 3092 29.50

Table 3: Table of benchmarks

4.1 Experimental setup

The benchmarks are listed in Table 3. For each program, the table specifies the
number of faulty versions (Vs), the number of lines of code in the original version
of the program (LOC), the number of test cases (TC), the average number
of failing test cases per version (FTC), the number of program entities of the
original version of the program (PE), and the average number of faulty lines of
code per version (FPV)6.

The benchmarks are obtained from the Software Information Repository [6].
The versions of sed, grep, flex, and gzip used are the same as ones used in Lo [17],
the versions of the Siemens and space test suites are the same as the ones used in
Naish [20]. The Siemens test suite consists of tcas, schedule, schedule2, totinfo,
print tokens, print tokens2 and replace. Overall, the experimental setup consists
of 180 program versions, with over a million lines of code in total, and an average
of 2.88 buggy lines per version.

The Siemens test suite is a widely used set of benchmarks in the domain
of SFL [1, 2, 16, 24, 25, 29]. Space was additionally included by Naish [20]. The
second set of benchmarks, consisting of versions of gzip, grep, flex and sed,
has been used to assess SFL in [17]. In this paper, we demonstrate experimental

6 Note that some program versions contain no faults. This happens when the fault
appears in a non-executable line of code, such as a macro definition. These versions
are removed from the experiment following [20].



results on the union of the sets of benchmarks used in these papers, making our
evaluation, to the best of our knowledge, the largest set of C programs used to
evaluate measures for SFL. Moreover, the set of measures in our evaluation is,
to the best of our knowledge, the largest set of measures ever compared over any
set of benchmarks in SFL.

Each test case was executed for each of the faulty programs and the result
(pass or fail) recorded together with the set of the lines of code that were ex-
ecuted during this test (this data was extracted using gcov). The pass or fail
result was decided based on the output of the program and its comparison with
the original program on the same input. Crashes were recorded as failures. The
collected coverage data was used as an input to the measures, which assigned a
suspiciousness score to each program entity (statements) in the (mutant) pro-
gram and sorted the lines of code in the descending order of suspiciousness.
To assign a score, we added a small prior constant (0.5) to each cell of each
program entity’s contingency table in order to avoid divisions by zero, as is
convention [20].

We experimented over a range of different prior constants (PC) in between
0 to 1, and did not discover any significant or noteworthy differences in results.
The exception was for the PatternSimilarity measure (for which we used the
ranking equivalent measure −anf aep in our implementation). We discovered that
this measure was optimised if we set the PC to anf = 0.1 and aep = 0.5. The
optimised version of PatternSimilarity is henceforth called PattSim2, and the
unoptimised PattSim1.

4.2 Methods of assessment

We use two means of assessment: an average scoring method and a Wilcoxon
rank-sum significance test. We discuss the details here.

To score how well a measure performs on a benchmark, we introduce the
best, worst and average scoring methods [1,20,29]. Formally, where m is a mea-
sure, n is the number of program entities in the program, b is a bug with the
highest degree of suspiciousness of any bug and bugs is the number of faulty
lines in the program, we define best(m) = (|{x|m(x) > m(b)}|/n) × 100 and
worst(m) = (|{x|m(x) > m(b)}|/n)×100 and avg(m) = best(m)+((worst(m)−
best(m))/(bugs + 1)). For our evaluation we use the avg scoring method [20],
which gives us the percentage of non-buggy program entities which we’d expect
an engineer to examine before locating a bug, given the number of faulty lines
in the program. To get the avg score for a benchmark, we take the mean avg of
the scores of all the versions in that benchmark. To get the overall avg score, we
take the mean of the 12 benchmark scores.

We performed a second means of assessment using Wilcoxon rank-sum tests.
The Wilcoxon rank-sum test is a non-parametric statistical test which tests
whether one population of values is significantly larger than another popula-
tion [27]. Using this test, we were able to establish which measures were signif-
icantly better than others, by comparing each measure’s 12 average scores for



each benchmark.7 To establish a baseline for localisation efficiency, we included
a measure (Rand) which assigns each program entity a random suspiciousness
score.

4.3 Results

Name Score Name Score Name Score Name Score

LexOchiai 13.74 Ample2 16.48 Keynes 18.22 InfoGain 19.93

PattSim2 13.88 Dennis 16.66 Good2 18.22 JMeasure 19.95

Zoltar 13.92 Popper1 16.87 Finch1 18.22 Ochiai2 20.40

Naish 14.01 Korb3 16.93 Forbes1 18.22 SokSneath5 20.40

PattSim1 14.21 2WaySupport 16.93 Tarantula 18.22 MI 20.53

WongIII 14.23 YulesQ 17.11 Interest 18.22 Peirce 22.37

Kulc2 14.41 NPV 17.15 AddedValue 18.22 Leverage 23.20

M2 14.52 Rescher 17.15 SebagSch 18.22 BinaryNaish 23.34

Ochiai 15.25 Lewis 17.16 OddMultiplier 18.22 WongI 23.43

Conviction 15.65 AMean 17.17 Example 18.22 Confidence 23.43

Certainty 15.65 Stiles 17.27 Zhang 18.22 Fleiss 23.61

Crupi 15.88 GMean 17.27 Korb2 18.24 Scott 23.86

Michael 16.00 Phi 17.27 1WaySupport 18.24 Faith 24.49

Klosgen 16.31 Jaccard 17.40 Laplace 18.42 LeastCont. 25.83

Mountford 16.41 CBISqrt 17.68 Suppes 18.62 WongII 25.85

YoudensJ 16.48 Popper2 17.74 Pearson1 18.62 Gower 26.41

Earman 16.48 Cohen 17.98 SokSneath4 18.65 GoodKrus 26.64

Carnap1 16.48 Kappa 17.98 HMean 18.65 Specificity 27.20

Carnap2 16.48 CBIlog 18.11 Good 19.26 Anderberg2 27.25

Levi 16.48 Likelyhood 18.22 PearlII 19.26 FagerMc 29.10

Dispersion 16.48 GilbertW 18.22 Cheng 19.26 Rand 31.74

Table 4: Overall avg scores for measures

We now present our experimental data and quantify their significance. We
first discuss Table 4. The average scores for those suspiciousness measures with a
higher score than the random measure are listed in Table 4. Equivalent measures
are represented by one measure per equivalence class (with preference given to
measures already established in SFL), and the new measures are in bold. Note
that (thirteen) additional potential sets of equivalences are suggested by the
equal scores in the table.

We first make some general observations about the table. Some prominent
established measures appear quite low on the list, such as Jaccard and Taran-
tula. It is interesting that Tarantula (which is equal to P (E|C)), performs worse
than NPV (which is equal to P (¬E|¬C)). Also, some established measures ap-
pear quite high on the list, such as Zoltar and Naish. Thus, our larger-scale

7 Following a convention on small sample sizes, we applied continuity correction by
adjusting the Wilcoxon rank statistic by 0.5 towards the mean value when computing
the z-statistic.



comparison accentuates the successes and failures of established measures. The
top-performing measures from each of our newly introduced categories of similar-
ity, confirmation, predictive, causal and custom measures are PattSim2, Crupi,
NPV, Lewis and LexOchiai , respectively. As we can see, many new measures are
competitive with established ones. Finally, Rand’s average score was consistently
between 30–38% on reruns, which is what one might expect given an average of
2.88 bugs per program version.

We now discuss PattSim2. We saw that PattSim2 has an elegant monotonic
reduction to −anf aep , and performs particularly well despite its relative simplic-
ity, coming in the second place. Note that the difference between the results for
PattSim2 and PattSim1 was a consequence of changing the prior constant (PC)
(the details of which are discussed in the experimental setup section) in order to
try and optimise the PatternSimilarity measure. We experimented in this way
with this measure, because we noticed (as a theoretical observation) that by
lowering the prior constant for anf it became a measure that converged to be-
ing single bug optimal. PattSim2 is a statistically significant improvement over
PattSim1 using p = 0.02. We emphasise that we did not observe that changing
the PC for our other top measures resulted in improvements in terms of their
relative position in Table 4. We believe this is because the simplified ranking
equivalent version of PatternSimilarity = −anf aep used in our experiments is
an extremely simple measure, and is consequently altered significantly by small
adjustments (such as PC), where other measures are not.

We now discuss LexOchiai . This is our new optimising scheme Lex g with
Ochiai as the internal measure g, and it is the top performer. Most of the mea-
sures can be used as a submeasure g for Lex g and achieve a better score than all
other measures below LexOchiai in the table. To this end, LexStiles , LexM2, and
LexWong−III are the runners up. Thus, Lex g can be viewed as a good measure
optimiser on our benchmarks. LexOchiai achieved the best score for three of the
twelve benchmarks (Tcas, Totinfo, Schedule2, Replace, Gzip, Flex, Grep), the
second best score for two (PrintTokens, PrintTokens2) and performed less well
(towards the bottom end) in the remaining three, but never went below a score
of 18.77 for such benchmarks (meaning it still has a good score in cases where
other measures are ranked higher). LexOchiai still maintains the top overall av-
erage score if the test is run on the small programs alone (i.e. the Siemens test
suite, with a score of 17.83) and comes a close third with a score of 8.02 on
the larger programs alone (after PattSim2 and Zoltar which score 7.53 and 7.76,
respectively). If the worst score is used instead of the average, LexOchiai still
has the top overall score (22.32). Overall, these results support the claim that
LexOchiai is a robust and top-performing suspiciousness measure.

We now discuss our significance tests. Firstly, Rand was significantly better
than Loevinger, TwoWaySupportVariation, CollectiveStrength, and GiniIndex,
using p = 0.05. We believe this is sufficient to conclude that these measures
are ineffective in SFL. LexOchiai was significantly better than all measures using
p = 0.29. Using p = 0.05, it was significantly better than everything that scored
below and including Peirce in the fourth column of Table 4, and was additionally



significantly better than Good, PearlII, Cheng and Infogain. Thirdly, PattSim2
was significantly better than everything below and including Leverage in the
fourth column (apart from Fleiss and Scott), and was additionally better than
MI, Jmeasure, Infogain, Cheng, PearlII, Good, Hmean, SokSneath4, Pearson1,
Suppes, Mountford and PattSim1. In general, PattSim2 was significantly better
than all the measures below it on Table 4 using p = 0.21 (apart from Zoltar
p = 0.92).
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Fig. 2: Graphical comparison of prominent measures

Finally, we discuss Fig. 2, which compares the performance of some prominent
measures graphically. For each measure, a line is plotted as a function of the avg
scores for each of the 180 program versions. If y% of those versions have an
average score ≤ x%, a point is plotted on the graph at (x, y). For example, for
the Rand measure, 50% of the versions have an average score lower than 58%.
LexOchiai and PattSim2 have an almost aligned performance.

5 Conclusions and Future Work

We presented what is, to the best of our knowledge, the largest comparative
analysis of suspiciousness measures on C programs for SFL to date, comparing
157 different measures on 12 C programs, constituting over a million lines of
examined code. Out of these measures 95 are new to the domain of SFL. We
taxonomised these measures into five different classes: similarity, association,
causation, confirmation and custom measures. We demonstrated that each class
is applicable to SFL, and that many measures are in fact equivalent in terms
of ranking, thus reducing the space of measures for experimental consideration.



We defined a new custom measure optimiser Lex g, which can admit any other
measure g as its inner measure. Our experimental results demonstrate that our
new measures LexOchiai and PattSim2 achieve the best average scores over other
measures and are significantly better than many of them with p = 0.05.

We conjecture that the top performance of LexOchiai is owed to a strong a
priori component (single bug optimality), together with an experimentally vindi-
cated a posteriori component (using the Ochiai measure as a submeasure). Our
second best performer, PattSim2, is ranking equivalent to −anf aep , demonstrat-
ing the success of an extremely simple measure.

We will extend our work in several directions. On the experimental side,
we plan to perform experiments on benchmarks that have multiple bugs. Given
publicly available multiple-bug benchmarks are rare, this includes the creation of
such benchmarks. On the theoretical side, we would like to investigate conditions
for multiple-bug optimality, and develop measures that satisfy those conditions.
Finally, we would like to create an easy-to-use tool that implements the measures
discussed in this paper.
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