
DSValidator: An Automated Counterexample Reproducibility
Tool for Digital Systems

Lennon Chaves, Iury Bessa

Federal University of Amazonas

Manaus, Brazil

lennonchaves@ufam.edu.br

iurybessa@ufam.edu.br

Lucas Cordeiro, Daniel Kroening

University of Oxford

Oxford, United Kingdom

lucas.cordeiro@cs.ox.ac.uk

kroening@cs.ox.ac.uk

ABSTRACT
Wepresent an automated counterexample reproducibility tool based

onMATLAB, calledDSValidator, with the goal of reproducing coun-
terexamples that refute specific properties related to digital systems.

We exploit counterexamples generated by the Digital System Veri-

fier (DSVerifier), which is a model checking tool based on satisfiabil-

ity modulo theories for digital systems. DSValidator reproduces the
execution of a digital system, relating its input with the counterex-

ample, in order to establish trust in a verification result. We show

that DSValidator can validate a set of intricate counterexamples for

digital controllers used in a real quadrotor attitude system within

seconds and also expose incorrect verification results in DSVerifier.

The resulting toolbox leverages the potential of combining different

verification tools for validating digital systems via an exchangeable

counterexample format.

KEYWORDS
Model Checking; Digital Systems; MATLAB.

ACM Reference Format:
Lennon Chaves, Iury Bessa and Lucas Cordeiro, Daniel Kroening. 2018.

DSValidator: An Automated Counterexample Reproducibility Tool for Digi-

tal Systems. In HSCC ’18: 21st International Conference on Hybrid Systems:
Computation and Control (part of CPS Week), April 11–13, 2018, Porto, Por-
tugal. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3178126.

3178151

1 INTRODUCTION
Digital systems (e.g., filters and controllers) consist of a mathemati-

cal operator that maps one signal to another signal using a fixed set

of operations [12]; they are used in a wide range of applications ow-

ing to advantages over their analog counterparts, such as reliability,

flexibility and cost. However, digital systems have disadvantages:

since they are typically implemented in microprocessors, errors

might be introduced by quantization and round-off. The choice of

hardware, the realization (e.g., delta and direct forms) and imple-

mentation aspects (e.g., the number of bits, usage of fixed-point

Supported by EPSRC grant EP/J012564/1, ERC project 280053 (CPROVER) and the

H2020 FET OPEN 712689 SC
2
.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

HSCC ’18, April 11–13, 2018, Porto, Portugal
© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5642-8/18/04.

https://doi.org/10.1145/3178126.3178151

arithmetic) have impact on the precision and performance of the

digital system [3].

We have proposed a model checking procedure named Digital
System Verifier (DSVerifier) [15], which detects errors in a digi-

tal system implementation considering finite word-length (FWL)

effects [13, 16]. It verifies digital filters and controllers given as

transfer functions or state-space equations [1, 3, 4, 9, 18]. DSVeri-

fier checks properties related to overflow, limit cycle, stability and

minimum-phase; it also supports a variety of digital system re-

alizations and numerical formats. If DSVerifier finds a property

violation, then it produces a counterexample, i.e., a sequence of

states that leads the digital system to the error state. The challenge

to reproduce the counterexample provided by verifiers is in the

complexity to compute the output and internal states of a digital

system; in particular, depending on the counterexample length,

manual inspection by engineers may be too tedious.

There are already several toolboxes in MATLAB that support

digital system design [17]. For instance, the Fixed-Point Designer
Toolbox provides data-types and tools for developing fixed-point

digital systems. There are further toolboxes with different objec-

tives, e.g., optimization, design of control systems and digital signal

processing [17]. However, there is no toolbox to reproduce coun-

terexamples in digital systems generated by verifiers, i.e., to au-

tomatically reproduce a sequence of states that refutes a specific

property with the goal of establishing trust in a verification result.

The closest academic work to ours are verifiers that validate

counterexamples using the witness validation approach, which

reproduces the verification results by checking a counterexample

given in the graphml format [5]. For instance, CPAchecker [6]

and Ultimate Automizer [14] employ the error witnesses to avoid

false alarms produced by static analyzers, i.e., given a witness for a

problematic program path, they re-verify that the witness indeed

certifies that the specification is violated. However, those tools

are unable to support the validation of systems that require fixed-

point arithmetic, and consequently disregard FWL effects, which is

needed to successfully validate implementation-level properties of

typical digital systems.

Contributions. This paper presents and evaluates DSValidator,
a novel MATLAB toolbox that automatically checks whether a

counterexample given by a verifier is reproducible. We propose

a format to represent the counterexamples that can be used by

CBMC [10] and ESBMC [11], which are used as back-end in DSVer-

ifier. Here, a counterexample provides assignments to the digital

system’s variables. This counterexample allows us to reproduce the

failed property, providing the concrete, low-level details that are

needed to simulate the digital system in MATLAB. DSValidator is
able to validate counterexamples related to overflow, limit-cycle,

https://doi.org/10.1145/3178126.3178151
https://doi.org/10.1145/3178126.3178151
https://doi.org/10.1145/3178126.3178151

HSCC ’18, April 11–13, 2018, Porto, Portugal Lennon Chaves, Iury Bessa and Lucas Cordeiro, Daniel Kroening

stability and minimum-phase. We show that DSValidator is able to
reproduce a set of intricate counterexamples for digital controllers

used in a real quadrotor attitude control system within seconds.

DSValidator is also able to expose incorrect verification results in

DSVerifier caused by wrong computation of the system output.

Availability of Data and Tools. The experiments described in this

paper are based on a set of publicly available benchmarks. All tools,

benchmarks, videos and results of our evaluation are available on

a supplementary web page http://dsverifier.org/. In particu-

lar, the source code of DSValidator is available in a public repos-

itory located at https://github.com/ssvlab/dsverifier/tree/master/

toolbox-dsvalidator.

2 DSVALIDATOR DIGITAL SYSTEM
REPRODUCIBILITY ENGINE

DSValidator is able to simulate digital controllers and filters consid-

ering implementation features (e.g., FWL effects and realizations)

by replaying a given counterexample provided by a verifier.

2.1 Representation of the Digital System
DSValidator supports digital systems (digital controllers and filters),

represented by transfer functions, i.e., frequency domain equations

that are able to represent input-to-output relations in a digital

system. The following expression presents the general form of a

digital system transfer function:

H (z) =
B(z)

A(z)
=
b0 + b1z

−1 + ... + bMz−M

1 + a1z−1 + ... + aN z−N
, (1)

where z−1 is called backward-shift operator; A(z) and B(z) are the
denominator and numerator polynomials; and N andM represent

the denominator and numerator polynomials order, respectively.

Another representation is the difference equation, which can be

given as

y(n) = −

N∑
k=1

aky(n − k) +
M∑
k=0

bkx(n − k). (2)

Eq. (2) allows DSValidator to compute the system output y(n)
at the n-th instant (i.e., at time t = n · T , where T is the system

sample time) using values of the past outputs and the present and

past inputs, i.e., x(n).

2.2 Properties and their Counterexamples
2.2.1 Stability and Minimum-phase. A digital system is stable

iff all of its poles are inside the z-plane unitary circle; poles must

have the modulus less than one. Minimum-phase is also a desirable

property for digital systems. A digital system is a minimum-phase

system iff all of its zeros are inside the z-plane unitary circle. The

counterexample reproducibility for both minimum-phase and sta-

bility does not require DSValidator to compute output and states

since polynomial analysis is performed, but FWL effects over the

coefficients of Eq. (1) must be computed.

Definition 1. (Finite Word-Length) FWL[·] : RN+M+2 →

Q[RN+M+2] function applies FWL effects to a polynomial vector rep-
resentation, where Q[R] represents the quantized set of representable
real numbers in the chosen implementation format.

Definition 2. (Roots of a Polynomial) R[·] : RN+M+2 → S

function computes the set of roots of a polynomial, andS is a family
of sets. The poles of Eq. (1) is computed by R[A(z)], and the zeros are
computed by R[B(z)].

Definition 3. (Stability Reproducibility) DSValidator com-
putes the FWL[A(z)] roots for stability reproduction. If any root
has modulus equal or greater than one, then the system is unstable;
otherwise, it is stable.

Definition 4. (Minimum-phase Reproducibility) DSValida-
tor computes the FWL[B(z)] roots for minimum-phase reproduc-
tion. If any root has modulus equal or greater than one, then the
system is non minimum-phase; otherwise, it is minimum-phase.

2.2.2 Overflow. When an operation result exceeds the limited

range of the processor’s word-length, overflow might occur in the

output of the digital system realization, resulting in undesirable

nonlinearities in the output. In order to reproduce an overflow

counterexample, the output sequence must be computed for the

given input sequence; the counterexample should contain an input

sequence x(n) that leads the digital system to overflow. DSValida-
tor reads the counterexample provided by a given verifier, and

then computes FWL effects over the coefficients, i.e., DSValidator
computes FWL[A(z)] and FWL[B(z)] (Definition 1).

After that, DSValidator checks the word-length representation

limits, considering n-integer bits and l-fractional bits. The maxi-

mum representable value is computed as 2
n−1 − 2

−l
and the min-

imum representable value is computed as −2n−1. Then, Eq. (2) is
iteratively unrolled for a given realization form, considering the

input x(n) (from the counterexample) to produce the output y(n).

Definition 5. (Realization Form)A realization form represents
a template to implement a given digital system in software by using
directly the coefficients of Eq. (1) in its implementation [3, 13, 16].

Definition 6. (Overflow reproducibility) DSValidator checks
whether each system’s output is inside the word-length representation
limits; the output does not lead to overflow if −2n−1 < y(n) < 2

n−1 −

2
−l is inside the word-length limits. A detected overflow violation must
be similar to the counterexample indicated by the verifier; otherwise,
the counterexample is not reproducible.

2.2.3 Limit Cycle Oscillation (LCO). Limit cycle oscillation is

defined by the presence of oscillations in the output even when the

input sequence is constant. LCO can be classified as granular or

overflow.

Definition 7. (Granular LCO) Granular limit cycles are au-
tonomous oscillations due to round-offs in the least significant bits [12].

Definition 8. (Overflow LCO) Overflow limit cycles appear
when an operation results in overflow using the wrap-aroundmode [12].

To reproduce LCO counterexamples, constant inputs and initial

states are used as test signals in DSValidator to compute the output

sequence y(n), considering a given realization form (Definition 5).

First, DSValidator obtains FWL effects on the numerator and de-

nominator coefficients (Definition 1). The constant input, initial

states and realization form are provided by a given counterexample

and employed to compute y(n) based on the fixed-point arithmetic

and also to simulate the respective digital system in MATLAB.

https://github.com/ssvlab/dsverifier/tree/master/toolbox-dsvalidator
https://github.com/ssvlab/dsverifier/tree/master/toolbox-dsvalidator

DSValidator: An Automated Counterexample Reproducibility
Tool for Digital Systems HSCC ’18, April 11–13, 2018, Porto, Portugal

Definition 9. (LCO reproducibility) If the system’s outputy(n)
provided by DSValidator leads to oscillations in the output with the
same characteristics (i.e., amplitude and period) from that indicated by
the verifier, then the LCO counterexample is reproducible; otherwise,
the verifier reports an error.

In order to confirm the absence of LCO, the algorithm proposed

by Bauer [2, 19] was implemented in DSValidator. The algorithm
searches exhaustively for a limit cycle; it is applicable to all direct

form realizations, besides being independent on the quantization

and system order. Therefore, Bauer’s method decides about the as-

ymptotic stability of (linearly stable) digital systems, by employing

exhaustive search. If it detects that a digital system is asymptotically

stable, then the latter is limit-cycle free; otherwise, it is susceptible

to overflow or granular LCO.

3 AUTOMATED COUNTEREXAMPLE
REPRODUCIBILITY FOR DIGITAL SYSTEMS

3.1 Proposed Counterexample Format
CBMC [10] and ESBMC [11] construct counterexamples whether a

property violation is found. A counterexamples is a trace that shows

that a given property ϕ does not hold in the model represented by

a state transition system.

Definition 10. (State Transition System) A state transition
system is defined by a triple (S,R, S0), where S represents the set of
states, R ⊆ S × S represents the set of transitions (i.e., pairs of states
specifying how the digital system can move from state to state) and
S0 ⊆ S represents the set of initial states.

Definition 11. (Counterexample)A counterexample for a reach-
ability property ϕ is a sequence of states s0, s1, . . . , sk with s0 ∈ S0
(initial state), sk ∈ S (bad state) and γ (si , si+1) ∈ R for 0 ≤ i < k ,
that refutes ϕ.

Counterexamples allow the user: (i) to analyze a failure, (ii) to
understand an error, and (iii) to correct either the respective speci-

fication or the model, i.e., the property and the program that have

been analyzed [20]. For our current work, DSValidator exploits
counterexamples provided by verifiers [10, 11, 15]; if there is a

property violation, then the verifier provides a counterexample,

which contains inputs and initial states that lead the digital system

to a failure state. Fig. 1 gives an example of the counterexample

format for an overflow LCO violation for the digital system repre-

sented by Eq. (3):

H (z) =
2002 − 4000z−1 + 1998z−2

1 − z−2
. (3)

The proposed counterexample format illustrated in Fig. 1 de-

scribes the violated property (represented by a string), transfer
function numerator and denominator (represented by fixed-point
numbers), bound (represented by an integer), sample time (repre-

sented by a fixed-point number), implementation aspects (integer

and fractional bits represented by an integer), realization form (rep-

resented by a string), dynamical range (represented by an inte-
ger), initial states, inputs, and outputs (which are represented by

fixed-point numbers). In particular, the counterexample provides the

needed data to reproduce a given property violation via simulation

in MATLAB.

1 Property = LIMIT_CYCLE
2 Numerator = { 2002, -4000, 1998 }
3 Denominator = { 1, 0, -1 }
4 X_Size = 10
5 Sample_Time = 0.001
6 Implementation = <13,3>
7 Numerator (fixed -point) = { 2002, -4000, 1998 }
8 Denominator (fixed -point) = { 1, 0, -1 }
9 Realization = DFI
10 Dynamical_Range = { -1, 1 }
11 Initial_States = { -0.875, 0, -1 }
12 Inputs = { 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,

0.5, 0.5, 0.5}
13 Outputs = { 0, -1, 0, -1, 0, -1, 0, -1, 0, -1}

Figure 1: Proposed Counterexample Format Example.

DSValidator reads a “.out” file to extract the counterexample

and then transforms it into MATLAB variables; those “.out” files

are generated by the verifier after the digital system verification is

performed. Currently, DSValidator is able to validate the minimum-

phase, overflow, stability and limit-cycle properties for a digital

system that is represented by a transfer function. Additionally,

DSValidator is able to employ 6 direct and delta realization forms for

digital systems: direct form I (DFI), direct form II (DFII), transposed

direct form II (TDFII), delta direct form I (DDFI), delta direct form

II (DDFII) and transposed delta direct form II (TDDFII) [3].

3.2 Automated Counterexample Validation
There are five steps to automatically perform the automated coun-

terexample validation in DSValidator (Fig. 2).
In step (1), DSValidator obtains the counterexample and then

uses a shell script to extract the data related to the digital sys-

tem, i.e., property, transfer function numerator and denominator,

fixed-point representation, k-bound, sample time, implementation

aspects, realization form, dynamical range, initial states, inputs

and outputs. In step (2), DSValidator converts all counterexam-

ple attributes into variables that can be manipulated in MATLAB.

In step (3), DSValidator simulates the counterexample (violation)

for the failed property, which is derived from the counterexample

by providing concrete, lower-level details needed to simulate the

digital system in MATLAB. In this specific step, all FWL effects

and quantizations are applied to the digital system and to every

arithmetic operation to compute the outputs with FWL effects, con-

sidering realization form and the desired property, as previously

mentioned (subsection 2.2). In step (4),DSValidator compares the re-

sult between the output provided by the verifier and that simulated

by MATLAB. Finally, in step (5), DSValidator stores the extracted
counterexample in a .MAT file and then reports its reproducibility.

3.3 DSValidator Features
DSValidator’s features can be described as follows:

1

• Macro Functions: functions to reproduce the validation

steps (e.g., parsing, simulation, comparison and report).

• Validation Functions: check and validate a violated prop-

erty (e.g., overflow, limit-cycle, stability andminimum-phase).

1
The features of DSValidator are described in the Toolbox Documentation.

http://dsverifier.org/matlab-toolbox/dsvalidator-documentation/

HSCC ’18, April 11–13, 2018, Porto, Portugal Lennon Chaves, Iury Bessa and Lucas Cordeiro, Daniel Kroening

Figure 2: Automatic Counterexample Validation Process.

• Realizations: reproduce realizations forms to validate over-

flow and limit-cycle (for direct and delta forms).

• Numerical Functions: perform the quantization process;

select rounding mode (nearest, floor and ceil) and overflow

mode (wrap-around and saturate); fixed-point operations

(e.g., sum, subtraction, multiplication); and delta operator.

• Graphic Functions: plot the graphical representation of

overflow to show each output exceeding the supported word-

length limits; limit-cycle to represent the system’s output

oscillations; and poles/zeros to show stability and minimum-

phase with (or without) FWL effects inside a unitary circle.

3.4 DSValidator Result
The structure of the result of DSValidator result is given in Fig. 3.

The attributes are defined in the .MAT file with the following struc-

ture: counterexample gives the counterexample identification; digi-
tal system gives the numerator, denominator and transfer function

representation; inputs give input vector and initial states; implemen-
tation gives the number of integer and fractional bits, dynamical

ranges, delta operator, sample time, bound and realization form;

outputs report the verification and simulation results, execution

time in MATLAB and comparison status, where it reports whether

the counterexample is reproducible or not. All execution times are

CPU times, i.e., the elapsed time periods spent in the allocated CPUs,

which is measured with the times system call on POSIX systems.

3.5 DSValidator Usage
DSValidator is called via the command line in MATLAB as follows:

validation(path, property, ovmode, rmode, filename)

where

• path is the directory with all counterexamples;

• property is defined as:

– “m” for minimum phase;

– “s” for stability;
– “o” for overflow;
– “lc” for limit cycle;

• ovmode represents the overflow mode: “wrap” for wrap-

around mode (default) and “saturate” for saturation mode;

• rmode represents the rounding mode, which can be “near-
est” (default), “floor” and “ceil”;

• filename represents the .MAT filename, which is generated

after the validation process; by default, the .MAT file is named

digital_system.

After executing the validation command, DSValidator prints sta-
tistics about the counterexamples validation. Fig. 4 shows a report

about the digital system represented in Eq. (3) for realizations DFI,

DFII and TDFII.

4 CASE STUDY: DIGITAL CONTROLLERS FOR
UAVS

4.1 Description of the Benchmarks
We evaluatedDSValidator on a set of 11 digital controllers extracted
from a quadrotor unmanned aerial vehicle (UAV) [7], as shown in

Table 1. These UAV attitude controllers were designed to perform

four tasks, for each angle dynamics (pitch, roll and yaw): angle-

dynamics modeling, selection and design of associated structures,

coefficient tuning and controller discretization. The experiments

evaluate overflow, minimum-phase, stability and limit-cycle in 33

different numerical formats: 3 for each digital controller, using

3 different realizations forms (i.e., DFI, DFII and TDFII), which

resulted in 99 different verification tasks for each property (396

verification tasks in total).

Table 1: Digital controllers for the evaluated quadrotor atti-
tude system.

Controller ID Sample Time (ms) Discrete Transfer Function

C1 20
1.5z−0.5

z

C2 20
60z−50

z

C3 20
110z−100

z

C4 20
135z2−260z+125

z2−z

C5 1
2002z2−4000z+1998

z2−z

C6 20
0.93z−0.87

z+1

C7 20
0.1z−0.09998

z−1

C8 2
0.0096z−0.009

0.002z

C9 2
0.1z−0.1
z−1

C10 20
0.009z−0.0084

z

C11 20
0.1z−0.09996

z−1

The chosen number of bits, associated to each implementation,

is based on the methodology presented by Carletta et al., which

DSValidator: An Automated Counterexample Reproducibility
Tool for Digital Systems HSCC ’18, April 11–13, 2018, Porto, Portugal

Figure 3: Structure of the .MAT file for representing counterexamples.

1 Running Automatic Validation ...
2 Counterexamples (CE) Validation Report ...
3 CE 1 time: 0.081929 status: reproducible
4 CE 2 time: 0.013996 status: reproducible
5 CE 3 time: 0.009488 status: reproducible
6 General Report:
7 Total Counterexamples Reproducible: 3
8 Total Counterexamples Irreproducible: 0
9 Total Counterexamples: 3
10 Total Execution Time: 0.10541

Figure 4: Counterexample Reproducibility Report.

suggests a computation based on the impulse response sum [8].

All implementations and realizations used in the experiments are

available online
2
.

4.2 Experimental Setup
For all tested digital systems implementation, we generated a set of

“.out” files containing the counterexamples and the verification re-

sults (i.e., successful and failed). For all tested implementations,

the signal input range lies between −1 and 1, that is, the sensor

(gyroscope) output bound in normal conditions. Using this con-

figuration for the signal input range, inputs employed during the

verification of limit-cycle or overflow violations is limited between

−1 and 1.

All experiments with DSValidator v1.0.1 were conducted on an

otherwise idle Intel Core i7-2600 3.40GHz processor, with 24GB

of RAM, running 64-bit Ubuntu. The times given in Table 2 are

averages of 20 executions for each benchmark; the measuring unit

is always seconds of CPU time.

4.3 Experimental Objectives
DSValidator was employed to verify the soundness and the reliabil-

ity of the verification results generated by the DSVerifier tool. Our

experimental evaluation aims to answer two research questions:

RQ1 (performance) does the reproducibility check take consid-

erably less effort than verification?

RQ2 (sanity check) are the counterexamples sound and can their

reproducibility be confirmed outside of the employed veri-

fier?

2DSValidator, benchmarks and results are available at www.dsverifier.org

4.4 Experimental Results
According to Table 2, DSVerifier [15] produced 54 counterexam-

ples for minimum-phase, 54 for stability, 27 for limit-cycle and

24 for overflow (159 counterexamples in total). Table 2 gives the

DSValidator results for the quadrotor attitude system digital con-

trollers, where “Property” describes the property that is evaluated

by DSValidator, “CE Reproducible” indicates the number of coun-

terexamples that are successfully reproduced, “CE Irreproducible”

indicates the number of counterexamples that are not reproducible,

and “Time” provides the run-time in seconds for all simulations

on each property. Indeed, all counterexamples were reproduced

by DSValidator, which suggests that the counterexamples gener-

ated by DSVerifier are sound and reliable. Additionally, with our

set of benchmarks, we were able to detect bugs in the DSVerifier

implementation; and with the DSValidator toolbox, we were able to

extract values from the counterexample to graphically reproduce

the bugs that were found, to ensure the verifier correctness and to

make the re-design process easy. Note that DSValidator returns a

.MAT-file that represents the digital system with its implementation

(e.g., realization, fixed-point format, inputs). By combining this im-

plementation extracted from the counterexample, the re-design of

the digital system is more practical, as the control engineer is then

able not only to implement the same digital system with a different

realization or fixed-point format, but he/she can also check with

DSValidator whether the violation is still occurring, i.e., through

graphs, property-verification simulation, and also result validation.

This makes DSValidator a strong tool to support the verification

process performed by DSVerifier.

Table 2: Results for the Quadrotor Attitude System.

Property CE Reproducible CE Irreproducible Time

Overflow 24 0 0.190 s

Limit Cycle 26 1 0.483 s

Minimum-Phase 54 0 0.012 s

Stability 54 0 0.188 s

Note further that the automated validation of all counterexam-

ples took less than 1 second. We consider these times short enough

to be of practical use to control engineers, and thus affirm RQ1.

The results also show that all counterexamples (except one) gen-

erated by DSVerifier, considering FWL effects and different real-

izations forms (i.e., DFI, DFII and TDFII), are sound and reliable,

since DSValidator is able to simulate the underlying digital system

www.dsverifier.org

HSCC ’18, April 11–13, 2018, Porto, Portugal Lennon Chaves, Iury Bessa and Lucas Cordeiro, Daniel Kroening

in MATLAB and then reproduce the respective counterexamples,

positively answering RQ2. However, for the limit cycle property,

there is one counterexample that was not reproduced in DSValida-
tor. Previously, DSValidator did not take into account overflow in

intermediate operations to compute the system’s output using the

DFII realization form. Indeed, this bug was confirmed and fixed by

the developer of DSVerifier.
3

4.5 Threats to Validity
We have reported a favorable assessment of DSValidator over a
diverse set of real-world benchmarks extracted from a quadrotor

attitude system. However, this set of benchmarks is limited within

the scope of this paper and DSValidator’s performance needs to

be further assessed on a larger benchmark suite in future work

to check whether the counterexample reproduction complexity is

increased.

We have also evaluated the counterexamples of one specific

model checker (DSVerifier), given the lack of available verifiers for

digital systems represented by transfer functions. Since our goal is

to verify a large number of real-world systems, it is then required to

combine the strengths of different verification techniques and tools.

In the future, we expect that DSValidator can be further employed

to leverage the potential of other verification tools for validating

digital systems via the proposed counterexample format.

5 RELATEDWORK
There are other tools that perform counterexample reproducibility

checks and validation, and in particular, to confirm a specification

violation. To eliminate the need for manual inspection of alarms,

the technique developed by Beyer et al. [5], which has inspired our

study, works with the notion of stepwise testification; a verifier finds
a problematic program path and, in addition to the verification

result “false”, it constructs a witness for that path. The technique

is implemented in two verification tools, named CPAchecker [6]

and Ultimate Automizer [14], but both verification tools neither

consider FWL effects nor check properties of digital systems. Here,

our main goal is to reproduce the failure found in digital controllers

w.r.t. FWL effects, while Beyer et al. [5] check whether the sequence

of states generated by the verifier match program semantics.

In MATLAB, there is a toolbox for Ordinary Differential Equa-

tions [17] that can be applied to check reproducibility of traces for

second-order systems, and in particular, considers the fixed-point

numerical representation; it is able to show graphically the limit

cycle behavior in digital systems using the phase portrait diagram.

However, it does not take advantage of recent advances in bit-

precise verification typically implemented in modern and efficient

software verifiers. Given the current state of the art in verification,

there is no toolbox or related standalone tool that considers the

fixed-point numerical representation to reproduce and validate vio-

lations for the digital system counterexample provided by a verifier.

By contrast, DSValidator supports the validation of counterexam-

ples considering FWL effects for digital systems represented by

transfer functions.

3
https://github.com/ssvlab/dsverifier/commit/88e857bdbc74a7ce3c74d327e2a1e7a246fa48cc

6 CONCLUSIONS
DSValidator reproduces counterexamples generated for a digital

controller that implements a quadrotor attitude system, taking

into account implementation aspects (fixed-point arithmetic and

realization), the overflow mode (saturate or wrap-around) and the

rounding mode (nearest, floor and round) by simulating the given

digital system with its counterexample trace in MATLAB. Cur-

rently, DSValidator is able to reproduce counterexamples for sta-

bility, minimum-phase, limit-cycle and overflow. There is no other

automated MATLAB toolbox that reproduces counterexamples for

digital system generated by verifiers, or, if this is impossible, to

identify the reason why the counterexample cannot be reproduced.

This step validates and endorses the verification step and, most

importantly, avoids false alarms. As future work, we expect to con-

tribute to digital system verification by supporting further verifiers

so that DSValidator can be applied to establish trust in verification

results for high-complexity systems.

REFERENCES
[1] R. B. Abreu, M. Y. R. Gadelha, L. C. Cordeiro, E. B. de Lima Filho, andW. S. da Silva.

Bounded model checking for fixed-point digital filters. Journal of the Brazilian
Computer Society, 22(1):20, 2016.

[2] P. Bauer and L.-J. Leclerc. A computer-aided test for the absence of limit cycles

in fixed-point digital filters. IEEE Trans. Signal Processing, 39(11):2400–2410, Nov
1991.

[3] I. Bessa, H. Ismail, L. Cordeiro, and J. Filho. Verification of fixed-point digital

controllers using direct and delta forms realizations. Design Autom. for Emb. Sys.,
20(2):95–126, 2016.

[4] I. Bessa, H. Ismail, R. Palhares, L. Cordeiro, and J. E. C. Filho. Formal non-fragile

stability verification of digital control systems with uncertainty. IEEE Transactions
on Computers, 66(3), 2017.

[5] D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, and A. Stahlbauer. Witness vali-

dation and stepwise testification across software verifiers. In ESEC/FSE, pages
721–733, 2015.

[6] D. Beyer and M. E. Keremoglu. CPAchecker: A tool for configurable software

verification. In CAV, volume 6806 of LNCS, pages 184–190, 2011.
[7] S. Bouabdallah, P. Murrieri, and R. Siegwart. Design and control of an indoor

micro quadrotor. In ICRA, volume 5, pages 4393–4398 Vol.5, April 2004.

[8] J. Carletta, R. Veillette, F. Krach, and Z. Fang. Determining appropriate precisions

for signals in fixed-point IIR filters. In DAC, pages 656–661, 2003.
[9] L. Chaves, I. Bessa, L. C. Cordeiro, D. Kroening, and E. B. de Lima Filho. Verifying

digital systems with MATLAB. In ISSTA, pages 388–391, 2017.
[10] E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs. In

TACAS, volume 2988 of LNCS, pages 168–176, 2004.
[11] L. Cordeiro, B. Fischer, and J. Marques-Silva. SMT-Based Bounded Model Check-

ing for Embedded ANSI-C Software. IEEE Transaction on Software Engineering,
38(4):957–974, 2012.

[12] P. Diniz, S. Netto, and E. D. Silva. Digital Signal Processing: System Analysis and
Design. Cambridge University Press, New York, NY, USA, 2002.

[13] S. Fadali and A. Visioli. Digital Control Engineering: Analysis and Design, volume

303 of Electronics & Electrical. Elsevier/Academic Press, 2009.

[14] M. Heizmann, J. Christ, D. Dietsch, E. Ermis, J. Hoenicke, M. Lindenmann, A. Nutz,

C. Schilling, and A. Podelski. Ultimate Automizer with SMTInterpol – (competi-

tion contribution). In TACAS, volume 7795 of LNCS, pages 641–643, 2013.
[15] H. Ismail, I. Bessa, L. C. Cordeiro, E. B. de Lima Filho, and J. E. C. Filho. DSVerifier:

A bounded model checking tool for digital systems. In SPIN, volume 9232 of

LNCS, pages 126–131, 2015.
[16] R. Istepanian and J. Whidborne. Digital Controller Implementation and Fragility:

A Modern Perspective. Advances in Industrial Control. Springer, 2001.

[17] MathWorks. Matlab toolbox, 2017.

[18] F. R. Monteiro. Bounded model checking of state-space digital systems: The

impact of finite word-length effects on the implementation of fixed-point digital

controllers based on state-space modeling. In FSE, pages 1151–1153, 2016.
[19] K. Premaratne, E. Kulasekere, P. Bauer, and L.-J. Leclerc. An exhaustive search

algorithm for checking limit cycle behavior of digital filters. IEEE Trans. Signal
Processing, 44(10):2405–2412, Oct 1996.

[20] H. Rocha, R. S. Barreto, L. C. Cordeiro, and A. D. Neto. Understanding program-

ming bugs in ANSI-C software using bounded model checking counter-examples.

In IFM, volume 7321 of LNCS, pages 128–142, 2012.

https://github.com/ssvlab/dsverifier/commit/88e857bdbc74a7ce3c74d327e2a1e7a246fa48cc

	Abstract
	1 Introduction
	2 DSValidator Digital System Reproducibility Engine
	2.1 Representation of the Digital System
	2.2 Properties and their Counterexamples

	3 Automated Counterexample Reproducibility for Digital Systems
	3.1 Proposed Counterexample Format
	3.2 Automated Counterexample Validation
	3.3 DSValidator Features
	3.4 DSValidator Result
	3.5 DSValidator Usage

	4 Case Study: Digital Controllers for UAVs
	4.1 Description of the Benchmarks
	4.2 Experimental Setup
	4.3 Experimental Objectives
	4.4 Experimental Results
	4.5 Threats to Validity

	5 Related Work
	6 Conclusions
	References

