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Abstract—SystemC is a system-level modeling language that of the threads is nondeterministic. Nevertheless, theeBySt
offers a wide range of features to describe concurrent systes  standard allows simulators to adopt a deterministic schedu
at different levels of abstraction. The SystemC standard penits ing policy. Consequently, simulators can avoid problemati

simulators to implement a deterministic scheduling policy which hedul hich oft ts the di f
often hides concurrency-related design flaws. We present aomel schedules, which often prevents the discovery or concayren

compiler for SystemC that integrates a formaland scalable race related design flaws.
analysis. This analysis combines both classic static analg and When describing synchronous circuits at the register trans
Model Checking techniques. The outcome of the analysis is ho fer level, system designers can prevent races by restyictin
only valuable to diagnose the effect of race conditions, butan  jnter-process communication to deterministic commuiteat
also be used to improve simulation performance dramaticajl. . S
Our compiler produces a simulator that uses the race analy- channels such asc_SIQnaIs Howeyer, the ellmlna’Flon of
sis information at runtime to perform partial-order reduct ion, races from the high-level model is often not desirable: In
thereby eliminating context switches that do not affect theresult ~ practice, system designers often use constructs that ndets
of the simulation. Experimental results show simulation seedups in order to model nondeterministic choices implicit in the
of one order of magnitude and better. design. In particular, models containing standard tratisac

I, INTRODUCTION level modeling (TLM) interfaces are frequently subjectdce

henomena. TLM designs usually consist of agents sharing

Time-to-market requirements have rushed the EIeCtr_o'ﬁBmmunication resources and competing for access to them.
Design and Automation (EDA) industry towards design, eyample is a FIFO with two clock domains — the races

paradigms that require a very high level of abstractionsThi, e/ the different orderings of the clock events that césear
high level of abstraction can shorten the design time by cgontribution: Due to the combinatorial explosion of
enabling the creation of fast executable verification mede});cess interleavings, testing methods for concurrent- sof
This way, bugs in the design can be discovered early in {igyre alone are unlikely to detect bugs that depend on sub-

design process. As part of this paradigm, an abundance ofife- interleavings. Therefore, we propose to employ formal
like system design languages has emerged. They promige joiihods to statically pre-compute thread-dependencyjoeta
modeling of both the hardware and software component of,3q predicates that predict race conditions, and to use this
system using a language that is well-known to engineers. jnformation subsequently during the simulation run to @run

SystemC offers a wide range of language features SUgf exploration of concurrent behaviors. There are twoiptess
as hierarchical design by means of a hierarchy of mOdU|‘\°7§ays of exploiting the information:

arbitrary-width bit-vector types, and concurrency withated
synchronization mechanisms. SystemC permits differeride
of abstraction, from a very high-level specification of sao-
tions down to the gate level. The execution model of SystemC
is driven by events that start or resume processes. In addi
communication via shared variables, processes can exehangz)
information through predefined communication channel$ suc
as signals and FIFOs.

Technically, SystemC programs rely on a C++ template
library. SystemC modules are therefore plain C++ classes,
which are compiled and then linked to a runtime scheduler.
This provides a simple and efficient way to simulate the b S
havior of the system. Methods of a module may be designatrea(i
as threadsor processesinterleaving between those thread

is performed at pre-determined brogram Iocatlc_)ns, €9 Hstraction. Our experimental results indicate that stn@te
the end of.a thread or when thaai t () method Is called. .conditions can be computed statically at reasonable codt, a
When multiple threads are ready for execution, the Order"?gsult in a simulation speedup of a factor of ten or better.
This research is supported by ETH research grant TH-21/86€lby the Outline: We discuss the related work and the basics of
Semiconductor Research Corporation (SRC) under contcac006-TJ-1539. partial-order reduction in Sec. Il and Sec. lll. The use of a

1) Using the statically computed dependency relations be-
tween the threads, we can generate a static scheduler,
replacing the dynamic scheduler shipped with the Sys-
temC library. This accelerates simulation using a single,
deterministic schedule.

The statically computed race conditions improve the
performance of partial order reduction, which results in a
greatly reduced number of interleavings. The remaining
interleavings can then be explored exhaustively, which
is a valuable validation aid.

We have implemented this technique in@&T [1], a hovel
earch compiler for SystemC. The static computation ®f th
e conditions relies on the Model Checking engine &f-S
Ags [2], a SAT-based model checker implementing predicate



Model Checker to obtain dependency information is motivatend S 00T is therefore able to detect opportunities for partial-
by means of an example in Sec. IV. We formalize the relevaotder reduction with little overhead during simulation.
semantics of the SystemC scheduler in Sec. V. ExperimentaFlanagan and Godefroid describe a state-less search tech-
results are reported in Sec. VII. nigue with support for partial-order reduction [17]. Their
method runs a program up to completion, recording infor-
mation about inter-process communication. Subsequehty,
Concurrent threads with nondeterministic interleaving sérace is analyzed to detect alternative transitions thathmi
mantics may give rise toaces A data race is a speciallead to different behaviors. Alternative schedules ardt bui
kind of race that occurs in a multi-threaded application whausing happens-beforénformation, which defines a partial-
several processes enter a critical section simultaneotinslg order relation on all events of all processes in the systegh [1
corrupting the consistency of the system [3]. Flanagan afithe procedure explores alternative schedules until avegit
Freund use a formal type system to detect race-condititaces are discovered. Helmstetter et al. present a partial
patterns in Java [4[Eraser5] is a dynamic data-race detectororder reduction technique for SystemC [19]. Their approach
for concurrent applications. It uses binary rewriting teiciues relies on dynamic information and is similar to Flanagan
to monitor shared variables and to find failures of the logkinand Godefroid’s technique [17]. Their simulator startshwit
discipline at runtime. Other tools, such &acerX [6] and a random execution, and observes visible operations tatdete
Chord[7], rely on classic pointer-analysis techniques to statilependency between the processes and to fork the execution.
cally detect data races. Data races can also occur in Syste@@ technique performs a powerful analysis statically that
if processes call synchronization routines while holdingred is able to discover partial-order reduction opportunitiex
resources. SystemC offers semaphores and mutex variablesittectable using only dynamic information.
protecting critical sections. Kundu et al. propose to compute read/write dependen-
Model Checkers are frequently applied to the verification @fes between SystemC processes using a path-sensitiie stat
concurrent applications; see [8] for a survey on softwarel®o analysis [20]. At runtime, their simulator starts with a +an
Checking. Vardi identifies formal verification of SystemQom execution and detects dependent transitions usinig stat
models as a research challenge [9]. Prior applicationsrafdd information. The novelty of our approach is to combine
analysis to SystemC or similar languages are indeed limitexbnventional static analysis with model checking to coraput
We therefore briefly survey recent advances in the appdioatisufficient conditions over the global variables of the Syxfe
of such tools to system-level softwar®DVerify [10] is a model that guarantee commutativity of the processes.
tool for the verification of Linux device drivers. It places Wang et al. introduce the notion guarded independence
the modules into a concurrent environment and relies éor pairs of transitions [21]. Their idea is to compute a
SATABS for the verification. KISS [11] is a tool for the condition (or guard) that holds in the states where two $jgeci
static analysis of multi-threaded programs written in C. transitions are independent. We show how to compute these
reduces the verification of a concurrent application to ttemnditions for SystemC using a Model-Checking approach
verification of a sequential program with only one stack blyased on Predicate Abstraction.
bounding the number of context switches. The reductionmeve
produces false alarms, but is only complete up to a specific
number of context switcheXISS uses $AM [12], a Model Model Checking is an algorithmic technique for exhaustive
Checker based oRredicate Abstractiol13], [14], to verify exploration of transition systems. However, Model Chegkin
the sequential model. when applied naively scales poorly on models with asyn-
Verisoft[15] is a popular tool for the systematic exploratiorthronous concurrent components, as the number of possible
of the state space of concurrent applications and could, iirierleavings rapidly explodes?artial-order reductionis a
principle, be adapted to SystemC. The execution of prosessechnique to explore the state space of concurrent systems
is synchronized avisible operationswhich are system calls in a way that preserves the soundness of the verification
monitored by the environment/erisoft systematically ex- result [22], [23], [24]. The key idea is to exploit commutatly
plores the schedules of the processes without storing-infof transitions to obtain a subset of all possible interlegsi
mation about the visited states. Such a method is, therefdrem a state such that the reduced-state graph retains a
referred to as atate-less searchVerisofts support for partial- representative behavior for each behavior that is removed.
order reduction relies exclusively on dynamic information ScooT uses partial-order reduction to compile a simulator that
achieve the reduction. In a recent paper, Sen et al. proposexalores only necessary interleavings. We briefly survey th
modified SystemC-Scheduler that aims to detect design flastandard definitions from the literature in this section][24
that depend on specific schedules [16]. The scheduler relieShe literature distinguishes between partial-order rédoc
on dynamic information only, i.e., the information has to bbased orpersistent setand reduction based afeep setsThe
computed during simulation, which incurs an additional-ruriwo approaches are orthogonal and achieve better resuéis wh
time overhead. In contrast,c®OT statically computes the combined. Both techniques compute a subset of the enabled
conditions that guarantee independence of the transitidmes transitions for each visited state and restrict future esgilon
analysis is very precise, as it is based on a Model Checker transitions in this set.

II. RELATED WORK

IIl. BACKGROUND ON PARTIAL-ORDER REDUCTION



Let (S, So, —) denote a transition system with a set of statddrogram 1 Example of race condition
S, initial statesSy C S, and a set of transitions:. A transition
a €— is a relation onS. For a €—, we write s > ¢ if
(s,t) € a. Atransitiona is enabledin a states if there exists
a statet such thats = ¢, and we writea € Enabled(s) to void guard () {
denote this fact. Otherwise; is disabledin s. if (pressure == PMAX) pressure = PMAX;

SC MODULE(m){
sc_clock clk; int pressure;

Definition 1. [21] Two transitions« and [ are guarded
independentith respect to a guards C S if and only if void increment () pressure++;}

for all s € ¢ the following hold:
SC CTOR(m) {

1. «a € Enabled(s) = SCMETHOD(guard); sensitive<< clk;

B € Enabled(s) < ( € Enabled(a(s)) SCMETHOD(increment); sensitive<< clk;
2. € Enabled(s) = }

a € Enabled(s) < o € Enabled(S(s)) 3

3. «a,0 € Enabled(s) = a(B(s)) = B(a(s))

The first two conditions guarantee that and 3 cannot

disable nor enable each other énwhile the third condition Processes are sensitive to the clock sigrikl The semantics
requiresa. and 3 to be commutative is. ScooT uses Model Of the SystemC scheduler guarantees that a method process
Checking to compute the conditieh Transitionsw and3 are IS executed without interruption up to the point where it
independent irs if and only if «, 3 are guarded independenteturns. Thus, the scheduler has to choose either the dafgedu
with respect tofs} [24]. sequencegguard increment or (incrementguard) each time

. _ the clock is updated. Consequently, the pressure can ekoeed
Def|n|_t|0n 2. _[24] Let D ¢ X be a symmetric and |yt it jts value reacheMAX and procesfcrements trig-
reflexive relation over the transitions of the system. The,.eq neforguard It is clear that the number of traces grows
relation D is a valid dependency relatiofor — if and only if o, onentially with the number of clock cycles. As a result,
(o, §) D implies thata, 3 are independent in all reachable sy siomatic exploration of all interleavings rapidly beesm
states. unmanageable, and the bad behavior might go unnoticed.

Similar to [20], Soo0T uses a data-flow analysis in order A conventional static analysis can discover trgatard
to compute an over-approximating dependency relation. reads the pressure and thatrementmodifies the pressure,
concluding that the processes are indeed dependent and that
' all interleavings must be explored. However, such analysis
fails to detect thaguard and incrementare commutative in
most cases. Our tool uses a Model Checker to compute the
weakest predicate over the pre-state variables that giemsn
the absence of races between the processes. In this example,
Definition 3 is, thus, concerned about what can happen tite execution ofncrementand guard is commutative if and
the future. The persistent-set technique computes a persist@mly if
set of enabled transitions in each visited state and réestric
the exploration to transitions in this set only. Model Chersk pressureZ PMAX — 1 A pressurez PMAX
typically compute persistent sets using information fraatis holds. 00T generates a simulator for the systematic explo-
analysis. ration of the state space that checks this condition atmnti
In contrast, the sleep-set technique maintains a set tofavoid exploring redundant schedules.
enabled transitions that can be skipped during the exjporat
(the sleep set). The method is concerned with branching
information from thepast Unlike the previous approach, In this section, we present a formalization of the SystemC
the sleep-set technique only reduces the number of explof@icurrency model in terms of fix-point computations over th
transitions and has no effect on the number of exploredsstate¢achable states of the model. _ o
The exploration backtracks early when the sleep set cantain Partial-order reduction has been studied mainly in the con-

Definition 3. [24] Let 7 = (S, Sy, —) be a transition system
and sp € S denote one of its states. A set of transitidhs"
Enabled(so) is persistentn s if and only if for all 5 € T
and all sub-tracessy <% 51 2 s5...5,, =3 5,41 Obtained from
transitionsa; ¢ T, 5 and «; are independent irs;.

V. MODELING THE SYSTEMC SCHEDULER

all enabled transitions. text of asynchronous concurrent programs, in which running
processes are preempted. SystemC is different as it israEbig
IV. INTRODUCTORY EXAMPLE for simulation of synchronous models. Its scheduler has-a

Program 1 serves as running example and illustrates thgerative multitaskingeemantics, meaning that the execution
need for a Model Checking approach. The moduldeclares of processes is serialized by explicit calls toasi t () method
two processeguard and increment Processguard watches and that threads are not preempted.
the value of shared variabf@essure which shall not exceed The scheduler tracks simulation time adelta cyclesThe
value PMAX and is incremented by procesxrement Both simulation time is a positive integer value (the clock). tael



cycles are used to stabilize the state of the system. A défigure 1 Overview of SSooT
cycle consists of three phasesialuate update and notify.

1) The evaluation phase selects a process from the set of Typechecker Flat
runnable processes and triggers or resumes its executio| Simplified version Control-Flow Graph E> C++ Model
The process runs immediately up to the point where system‘ét.?eeadermesl Pointer Analysis
it returns or invokes thevait function. The evaluation -
phase is iterated until the set of runnable processes  SYSemeh Mo ralysis o @gﬁ
is empty. The SystemC standard allows simulators to Rac/_gggysr}gition
choose any runnable process, as long as the policy i _ : Exhaustive
consistent between runs. Sizf;r_n”éor‘]’q'gggls Scheduler Synthesis Simulator

2) In order to simulate synchronous executions, processe Code Re-synthesis
can delay change-of-state effects by scheduling update Scoot
requests. After the evaluation phase terminates, the
kernel executes any pending update request. ThisTs
called theupdate phaseSignal assignments are typically
implemented using the update mechanism. Therefosgorithm 2 Computation of persistent sets
signals keep their value for an entire evaluation phase:

3) Finally, during thedelta-notification phasghe scheduler ~ Set get pers(Set runnable)
determines which processes are sensitive to events that S¢! Persistents;

for all (Processp; € runnable) do
have occurred, and adds all such processes to the set of {5, 4| (Processp; € runnable) do
runnable processes. if (p; >p:;) then continue;

The scheduler executes delta cycles until the set of ruenabl if ?fc?m;]u‘:aétl!\é?sbéépé%)s )ttlgirr:

processes is empty at the beginning of the evaluation phase. ppersigtents = persistents{p};

Subsequently, it updates the simulation time and notifies else
processes waiting for the time event. 10 persistents := persistents{p;,p;};
Formally, letS denote the set of states of a SystemC model. return persistents;
A processp is a functionS — 2°. Note that the execution
of the process may not terminate, or may abort with an error.
We assume the existence of a failure state= S such that
L € p(s) if the execution of the process can diverge when scoor abstracts implementation details of the SystemC li-
started in states. We denote the set of runnable process@gary by using simplified header files that declare only rafev
in s by Runnable(s). The evaluation phas&v : 2% — 2%  aspects of the API and omit the actual implementation. Subse
performs a fix-point computation defined by: quently, 00T uses static analysis techniques to discover the
_ 7 module hierarchy, the sensitivity list of processes, armdptbrt
Bu(S) = {ses|runnavic(s)=0} U Bv( U U p(s)) bindings. The next step is the computation of race condstion
for each pair of processes, which is explained in Sec. VI-C.
Similarly, we write Up : 2° — 29 to denote the function that ScooT then generates the code for the exhaustive simulator.
updates the set of states as described by the update phase Flially, ScooT translates the CFG back to a flat C++ program,
delta cycle performs the fix-point computation defined by: which no longer requires the SystemC library. We gse to
5(S) = 50 Up o Ev(S) compile the C++ file and to obtain an executable simulator.

We forbid dynamic creation of processes and dynamic
Finally, letUp,,,. : 2° — 2° denote the function that updatesnodifications of sensitivity listsrext trigger functions). The
the simulation time and notifies the processes waiting f@[;pport for SystemC currently comprises static creation of
this event. We model the semantics of the scheduler with tBF’ocesses, static sensitivity lists, waiting using sévisitlists,
functionSim(z) that computes the set of states at tim8im(0)  yaijting for a specific event, waiting for a certain amount of
is the set of initial states. time, delta notification, time notification, and communioat
Sim(t) = 6 o Up,;,,, o Sin(t — 1) channels such asc signals sc fifos, and tim_fifos.

s€S pe Runnable(s)

VI. MPLEMENTATION

A. Overview ofScooT B. A Scheduler with Partial-Order Reduction

Figure 1 shows an overview ofc®0T. We use an in-house
C++ front-end to translate the SystemC source files into aAlgorithm 1 is ScooTs implementation of the evaluation
control flow graph (CFG). The front-end ofc®0T accepts a phase. The soundness of the scheduling algorithm relies on
large subset of C++ including inheritance, overloadingual the assumption that processes cannot enable each otheg duri
functions, and simple forms of templates. the evaluation phase and therefore, that event notificason



Algorithm 1 Evaluation Phase: the commutativity condition checkeddsymutativép;, p;) is a predicate over states computed
statically at compile-time.

void evaluation phase Set runnable) for all (Processp;, € awakes) do
2 Set sleeps; 16 for all (Processp; € sleeps)do
while (runnablet( ) do if (commutativep;,p;))
4 if (runnable={p}) then begin 18 next_sleepsp;] :=
runnable :=0; run(p); return; next_sleepsp;] U{p;};
6 end; 20 end for
independents := getindep(runnable); sleeps := sleeps{pi};
8 for all (Processp; € independents)do 22 end for
runnable := runnabl&{p;}; run(p:); Processp := nondet select (awakes);
10 end for; 2 runnable := runnabl&{p}; run(p);
persistents := getpers(runnable); sleeps := nextsleepspl];
12 awakes := persistents, sleeps; 26 end while
if (awakes=0) then exit(0);
14 Map next_sleeps; // Process> Set

restricted to time notification and delta notificatibriThis computes the sleep sets for the next iteration using the map
restriction is benign in the context of system-level maagli next sleeps which maps processes to a set of processes
and gives rise to the following theorem: (lines 14-22). One line 17, the call tommutativeeturnstrue

if the processep; andp; are independent in the current state.
ScoorT relies on Model Checking to compute a conservative
condition that guarantees commutativity of the processésa
current state; the details of this pre-computation arequies|
Runnable(a(s)) = Runnable(s)\{a} in the following subsection. In contrast, traditional apgches
need to rely on either executing the processes to determine
which transitions are independent in the current statechvhi
adds overhead, or on an imprecise data-flow analysis.

In contrast to the related workyaluation phaseschedules  Finally, on lines 23-25, the scheduling algorithm nonde-
runnable processes using informatistatically collected to terministically runs a process froawakesand computes the
reduce the number of interleavings explored. We are not@wateep set of the next iteration.
of tools that compute equally strong conditions statically Algorithm 2 computes the set of persistent processes and is

The evaluation phase terminates once thergahableis the implementation of the functioget pers() As mentioned
empty. The algorithm performs partial-order reductiomngsi above, the call tacommutativereturnstrue if the processes
persistent sets and sleep sets and is a variation of tea®iqp; and p; are independent in the current state. In case
presented in [24]. In line 4, ifunnablecontains one processandp; are dependent, the scheduler adds both processes to
only, then the scheduler triggers its execution and returns persistents which ensures that both schedulgs,p;) and

Otherwise, the procedure retrieves the set of independépt, p;) are explored (line 10). Otherwisg; is inserted only
processes. &OT statically computes a dependency condif p; is absent fronpersistent Informally, the scheduler tries
tion for each pair of processes using a location- and fieltb avoid the execution ofp;,p;) if (p;,p;) is going to be
sensitive pointer analysis. At simulation time, the schedu explored.
calls get inde line 7) to search for runnable processe . o o
Withogt data Izigéenden)cies and adds all such pprocessesétocomputlng the Process Commutativity Conditions
independentsSubsequently, on lines 8-9, the scheduler runsPredicate Abstractionis a Model Checking technique that
all p; € independentin a deterministic order. abstracts a transition system by mapping sets of concietesst

On line 11, the algorithm callget persto compute the set to @ new, smaller abstract state space in a way that conserves
persistentf persistent processes. The subsequent part of the relevant behaviors of the system [13], [14]. Each paédic
algorithm uses the sefeeps, declared outside the main loopin the abstract model is represented by a Boolean variable,
on line 2, to perform partial-order reduction. On line 12 thwhile the original variables are removed. The abstract faiog
set awakesconsists of the persistent processes in sleeps is created using existential abstraction, which is a codize
If the set of awaken processes is empty (line 13), then ottaftstraction for reachability properties. If the propertyds on
traces are covering all subsequent behaviors, and therefdpe abstract model, it also holds on the original program. In

the simulator stops the execution. Otherwise, the schedu#@se a trace in the abstract model violates the property, the
feasibility of the counterexample must be tested in the cztac
This _rules out |mm_eg:i|atf3 notifications. The technique ca_lmtlended 0 model. The counterexample is callepurlousﬁ it does not
support immediate notification by augmenting the companatif the process d | h fi
commutativity condition with support for the set of notifigntocesses, as correspond to a concrete trace. In that case, a refinement

suggested in [20]. procedure adds new predicates in a way that removes the

Theorem 1. Suppose that for a processthat is runnable in
a states € 9, the execution of the processdoes not affect
the set of runnable processes:

Any two processes, 3 € Runnable(s) that obey this restric-
tion are independent in if they are commutative ia.



spurious trace. This is automated Bpunterexample Guided Program 2 Harness for the analysis of race conditions for
Abstraction RefinemefCEGAR) [25] and promoted by the a given pair of processgsl and p2. The pre-conditiony is
Model Checker $am [12]. Predicate abstraction has beetrue initially, and is iteratively strengthened by the aigum

applied to SpecC [26] and SystemC [27]. in Fig. 2.
- - - . assumed);
Figure 2 Iterative computation of the process commutativity ¢ = .- current state:
condition using predicate abstraction () p2();
4 s12 .= currentstate;
Concrete current_state := sp;
program I Ar?rsotééa Model CheckingMe»o s p2(); p1(); (
/ End s$2,1 = current state;
Abstraction { Abstract trace s assertéio#sa1);
Simulation
SpuriﬁV \clncrete
trace trace retained.
Refinement Strengthening In practice, we observe that the number of facts thab St
tracks during the computation of the weakest precondition o
New predicates ¢/ 512 = 59,1 may explode. Therefore, instead of comparing the
] entire state vectors, » andss, 1, we restrict the comparison to

the variables written by the processes. This set is detehin

The commutativity condition for a given pair of processesy means of a standard data-flow analysis.
p1 andps is checked during simulation by Alg. 1. In general,
SystemC processes need not terminate, and thus compuging th VII. EXPERIMENTAL EVALUATION
strongest possible commutativity condition for a giverr@di  In this section, we evaluate the benefits of combining
processep; andp, is undecidable. We compute a conservativgartial-order reduction techniques with Model CheckingeT
approximation by applying a software model checker to th&periments that we present are difficult instances. Com-
harness given as Program 2. mutativity of processes depends on control flow and data,

The basic idea of the harness is to rpn();p2(), and and the computation of the condition is susceptible to the
compare the result with the result of runnipg(); p1 () on the state-space explosion problem. We obtained the results on
same initial state. The harness operates as follows:llgitia a 3GHz Linux machine. The race analysis uses the model-
is set totrue. Theassumestatement in the first line restricts thechecking engine of 8rAss, and the abstract programs are
search to states that satisfy Then the values of the visible verified using Cadence SMV. We make the benchmarks and
variables are stored isg, the pair of processes: (); p2() is the tool available for experimentation by other researslagr
run, and the state is stored in . The state is restored t, www.cprover.org/scoot/
andpz(); p1() is run. The state is stored i3 ;. _

This harness is passed to the Model CheckerAs [2]. A- The Running Example
SATABS checks the reachability of the last line, which is We continue our running example (Program 1). Figure 3
modeled by means of an assertion. IATABS returns a depicts the number of backtracks and the number of explored
counterexample, we have a trage with an initial state transitions as a function of the number of simulation steps.
satisfying¢, passing through both processes, and ending ine set PMAX to 10. The simulator performs a state-less
state that violates the assertion. The path therefore bégia search, that is, backtracking is an expensive operatiotheas
state in which the two processes are commutatize®@rthen simulator has to replay the prefix. The partial-order reidinct
computes the weakest precondition«f, = s, ; alongside combines persistent sets and sleep sets. In this example,
that path. LetP; denote this conditionP;, is non-trivial due only persistent sets actually achieve a reduction. Witls thi
to the assertion on line 8, which guarantees progress. Tehnique, both numbers grow polynomially in the number
executions o1 (); p2() andpz(); p1() from a states terminate of steps, whereas without partial-order reduction, the fmem
and yield an equal state if satisfiesP;. of backtracks grows exponentially.

Finally, SCooOT strengtheng using—P;, yielding ¢’. This _
removes the trace. This procedure iterates until all terminat-B- State Machines
ing traces are discovered. The predicBte- \/ P represents  We use two large-scale benchmarks to evaluate the effect of
the weakest condition such that the execution®f);p2() statically computed race conditions. The first benchmatk) (B
andp2(); p1() terminate and that,; andp, are commutative. consists of a synchronous model with three processes. One
Note that the procedure is easily integrated into the stahdagrocess plays the role of a server waiting for requests,enhil
counterexample-guided abstraction refinement loop (Ei@)r the other two compete for access to the service. Program 3
Thus, there is no need to restart the abstraction procedunde, contains the skeleton of the benchmark. When triggered, the
the abstract model obtained during the previous iterat®on dlients and the server execute functiopsocessclient and



Figure 3 Number of backtracks and transitions on the runningtate machines communicating via shared variables. Themod
example as a function of the number of simulation steps has three processes. The state machines are implementgd usi
case switches. Figure 5 compares the effects of different

9000

8000 - | TBg%kstlfggrfgj - partial-order-reduction techniques on the simulatiore8nThe
70001 ; reduction is not as impressive as on B1, but still within the
F range of one to two orders of magnitude.
6000 P ) . .
For each pair of processes, Table | shows the time required
5000 . 1 . . .
. for the static analysis runninga$ABs and the number of
4000 - b L . . -
a strengthening iterations. The latter is an indicator of the
S000F A complexity of the control flow. The cost for B1 is negligible;
2000¢ ,_@/"ﬂ 1 the results for B2 indicate that a precise analysis can be
1000 g 1 time consuming. However, the computation can be distribute
0 16 20 30 40 50 60 70 80 90 100 onto multiple machines, as the computation for each pair of
Simulation Steps processes is independent. Furthermore, the precisioneof th
analysis can be controlled by bounding the number of sthengt
ening iterations, which yields a conservative approxiorati
Program 3 Multiple Clients Finally, as shown by the experiments, the time required for
_ a full exploration grows exponentially with the number of
bool locked; int op; simulation steps, and therefore, the time spent statidally

> void processclient() {

if (1locked)] op=getpid(): locked=rue:} a precise analysis eventually pays off.

. VIII. CONCLUSION
void processserver (X

6 switch(state) { We presented &o0T, a novel compiler for SystemC that
integrates static analysis and formal verification techegjin
order to improve simulation performance. The structure of
the SystemC model (hierarchy, port bindings) is computed
} at compile time by means of a value-set analysis. We use
a second value-set analysis to detect independent precesse
The next step is to invoke a modified software Model Checker
on each pair of dependent transitions in order to compute a
processserverrespectively. The clients communicate with theufficient condition for commutativity of the transition®ur
server via two shared variablep andlocked If lockedis set, technique benefits from the fact that SystemC processe®fare n
then the server is busy processing the reqopsOtherwise, preempted, and thus, only few such pairs have to be checked.
the clients compete for access to the service. The procesdese that the Model Checker is never applied to the entire
are sensitive to a clock. Figure 4 compares the number mbdel, but only to pairs of transitions — the static part of
explored transitions, the number of backtracks, and tha tothe analysis is therefore typically polynomial in the sizela
exploration time as a function of the number of simulationumber of processes.
steps. We present results without partial-order redud(iom ScooT uses the commutativity condition during simulation
POR), using persistent set®), using sleep setsS), and using in order to eliminate unnecessary interleavings. Our aislg
their combination P+S). The exploration is limited tol0” fully automatic and requires no annotation of the sourcescod
transitions. by the user. Using Model Checking, our analysis is able to
The results indicate that partial-order reduction usirggi-st detect reduction opportunities that depend on subtle abntr
cally computed commutativity conditions is able to reduwe t flow properties.
number of explored transitions, the number of backtradkd, a The experimental results indicate that our formal race-
the exploration time by about three orders of magnitude. analysis technique produces valuable information for jpgin
Our second benchmark (B2) consists of two synchronoti®e state space at runtime. To the best of our knowledge,
this work uses the strongest conditions for commutativity o
processes reported in the literature. Furthermore, thuke todf

8 case Idle: {switch(op) {...} break;}
case End: {state = Idle; locked =false;}

Benglmark Pg'r SATABS<[51] # Strengthe”'”gs between precision and computational cost can be contolled
B1 1 23 17 and the entire flow can be distributed on multiple machines.
B1 2 21 17
B2 0 1111 65 Acknowledgments
B2 1 396 24 )
B2 2 638 23 The authors are grateful to Doron Bustan (Intel Haifa)

for numerous discussions regarding SystemC TLM, and to

TABLE I: Runtime and number of iterations required to congptite  Thomas Wahl for suggestions that led to a significant improve
race conditions for each of the process-pairs ment of the paper.



Figure 4 Performance effect of static partial-order reduction on B1
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Figure 5 Performance effect of static partial-order reduction on B2
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