
Specifying and Verifying Systems with Multiple Clocks�

Edmund M. Clarke, Daniel Kroening, and Karen Yorav
Computer Science Department

Carnegie Mellon University
e-mail: emc,kroening,kareny@cs.cmu.edu

Abstract

Multiple clock domains are a challenge for hardware
specification and verification. We present a method for
specifying the relations between multiple clocks, and for
modeling the possible behaviors. We can then verify a
hardware design assuming that the clocks meet these con-
straints. We implement our ideas in the context of SAT based
Bounded Model Checking (BMC), using ANSI–C programs
to specify the functional behavior of the design.

1 Introduction

Formal methods have become indispensable in design-
ing hardware systems. The ability of formal methods, and
in particular model checking, to check large systems has in-
creased dramatically in the past few years. The presence
of multiple clock domains in a hardware design adds ad-
ditional complexity that makes formal methods even more
desirable. At the same time, the specification of multiple
clock domains is a challenge. Typically, high level specifi-
cation languages such as SystemC [10] require the users to
generate the clocks themselves. Commercial model check-
ers available today will either require the user to generate
the clocks, or not support multiple clock domains at all.

The behavior of designs with multiple clocks often de-
pends on specific properties of these clock signals. As a
trivial example, consider a simple parallelizer, i.e., a circuit
that takes as input a serial signal from one clock domain,
A, and outputs it in eight bit packets in the other clock do-
main, B. This design will fail if the clock of domainA is

�This research was supported by the National Science Foundation
(NSF) under grants no. CCR-0121547 and CCR-0098072, by the Army
Research Office (ARO) under contract no. DAAD19-01-1-0485, by the Of-
fice of Naval Research (ONR), the Naval Research Laboratory (NRL) un-
der contract no. N00014-01-1-0796, by the Semiconductor Research Cor-
poration (SRC) under contract no. 99-TJ-684. The views and conclusions
in this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of ARO,
ONR, NRL, NSF, SRC, the U.S. Government or any other entity.

faster than eight times the clock of domainB. Thus, with-
out constraints that represent relationships between clocks,
any verification effort is bound to fail.

We present a way to specify complex relationships be-
tween two or more clocks, including constraints on the fre-
quency of the clocks. The clock specifications can be loose,
allowing many different clocking schemes rather than a spe-
cific relationship between clocks. We then show how to
model these specifications, so that the system can be veri-
fied under the specified constraints, using any type of for-
mal verification technique. We do this by adding a special
purpose state machine that determines the behaviors of the
clocks. This machine is non-deterministic, which allows us
to model different clocking schemes at the same time. A
counterexample, if found, will contain the full timing infor-
mation for a particular clocking scheme causing this error.

We have implemented our ideas in the context of
Bounded Model Checking(BMC). In BMC, the transition
relation for a complex state machine and its specification
are jointly unwound to obtain a Boolean formula, which is
then checked for satisfiability using a SAT procedure such
as Chaff [8]. If the formula is satisfiable, a counterexample
is extracted from the output of the SAT procedure. If the
formula is not satisfiable, the state machine and its speci-
fication are unwound more to determine if a longer coun-
terexample exists. This process terminates when the length
of the potential counterexample exceeds its completeness
threshold (i.e., is sufficiently long to ensure that no coun-
terexample exists [7]) or when the SAT procedure exceeds
its time or memory bounds. BMC has been successfully
used to find subtle errors in very large circuits [12, 6, 3].

Our tool uses BMC to verify Verilog designs against
specifications written in ANSI-C [5]. When a new device is
designed, a ”golden model” is often written in a program-
ming language such as ANSI–C. This model is extensively
simulated to insure both correct functionality and perfor-
mance and later on implemented in a hardware description
language such as Verilog. It is essential to determine that the
C and Verilog programs are consistent. We extend the tool
of [5] with the results presented here. We translate clock

constraints into Boolean constraints that are added to the
Boolean formula representing the (bounded) computation
of the design. Thus, when a satisfying instance is found (a
counterexample), it contains a computation of the design in
which the clocks behave according to the specification.

The results we present here can be integrated with
many verification paradigms, in addition to Bounded Model
Checking. The same method that we use here in order to
analyze and translate clock constraints can be used in other
formal verification methods such as Explicit State and Sym-
bolic Model Checking.

Related Work

In [11], a tool for verifying the combinational equiv-
alence of RTL-C and an HDL is described. The RTL-C
code is translated into HDL, and then standard equivalence
checkers are used to establish equivalency. However, the
whole design is assumed to have a single clock.

There are variants of C designed specifically for the pur-
pose of hardware specification. The System C standard de-
fines a subset of C++ that can be used for synthesis [10].
Other variants of ANSI–C are Spec C and Handel C. We
chose to work with the the integer subset of the ANSI–C
language, which is more powerful than the variants meant
for synthesis. This enables us to handle programs that were
written as high-level system specifications, rather than pro-
grams that were targeted at hardware specifically. Although
we do not yet support the use floating point operations,
our tool supports most other ANSI-C operations, including
pointer arithmetics, bit-wise operators, and type conversion.

We are not aware of any specification language used for
formal verification that enables specifying relationships be-
tween clock frequencies. For example, the new property
specification language developed by Accellera [1] allows
specifying aClock Expression. This means that the clock
expression determines what the formula will consider as
a basic step. However, the language does not supply any
mechanism for specifying the clocks themselves, for exam-
ple specifying relationships between clock frequencies.

The work of [14] is related in that it shows how to model
phenomena that occur in multiple clock designs. In that
work the effect of a synchronizer flip-flop going into a meta-
stable state is modeled using non-determinism. This en-
ables the detection of a certain type of design errors using
model checking. In this work we are not concerned with
such low level phenomena, we view the design at a higher
level of abstraction and model its behavior in a world where
setup and hold times are zero, and flip-flops can never get
into meta-stable states. This is the level in which model-
checking is usually used, because at this level everything
can be described in a discrete manner.

In order to implement a clocking scheme we assign a

variable for each clock. We imagine a globalverification
tick, which is a discretization of time. At every verifica-
tion tick each clock in the system may either tick, or not.
This is marked by the variable associated with each clock
having the value 1 or 0 respectively. The RuleBase model
checker [9] uses a similar mechanism for implementing
clocking schemes. However, the clocking scheme needs to
be explicitly implemented by the user. The VIS [13] model
checker also supports multiple clock domains and requires
manual creation of clocking schemes. In our case the clock-
ing schemes are generated automatically, according to the
user specification.

Outline Section 2 explains what kind of constraints we
allow for multiple clock signals. Section 3 describes how
we translate linear equality constraints into finite state ma-
chines, while Section 4 does the same for inequalities. Sec-
tion 5 shows how to use these finite state machines for
Bounded Model Checking, and Section 6 gives details on
the examples we have been able to verify. Section 7 gives
conclusions and plans for future research.

2 Multiple Clock Domains

2.1 Clock Constraints

The main challenge when specifying designs with mul-
tiple clocks is that the desired functional behavior in the
general case requires assumptions on the clock signals. If
these assumptions are not met by the clocks the design may
not fulfill its functional specification. In order to solve this
problem we allow the user to pose constraints specifically
on the clock signals. We distinguish betweenfrequency
constraintsandsource constraints.

Frequency Constraints These constraints specify or re-
strict the frequency of clocks. We allow any number of
linear equalities and inequalities, connected with Boolean
conjunction or disjunction. The syntax is formally defined
as follows. A frequency expression(freq exp) consists of
the following:

freq exp:=
x Hz j x KHz j x MHzj x GHzj freq (clk) j
x * freq expj
freq exp+ freq exp j freq exp- freq exp

wherex is a rational number andclk is the name of a clock
signal. The syntax forequality constraints(eq const) is:

eq const:= freq exp1= freq exp2

The syntax for aninequality constraint(ineq const) is:

ineq const:= x * freq (clk1) 4 y * freq (clk2)

wherex;y are rational numbers,clk1, clk2are two (differ-
ent) clock signal names, and4 2 f>=;<=g. Finally, the
syntax for afrequency constraint(freq const) is a combina-
tion of the above:

freq const :=
eq constj
ineq constj
freq const1&& freq const2j
freq const1|| freq const2

For example, the frequency equality constraint

freq(clk1)=2*freq(clk2)

specifies that the frequency ofclk1 is exactly twice the
frequency ofclk2 , while the frequency constraint

freq(clk)=100 MHz ||

freq(clk)= freq(clk1) + 40 MHz

specifies that the frequency ofclk is either 100MHz or
40MHz more than the frequency ofclk1 . Equality con-
straints are allowed to contain any number of clock frequen-
cies, while inequalities may only involve the frequency of
two clocks. For example

freq(clk1)>=2*freq(clk2)

specifies that the frequency ofclk1 is at least twice as high
as the frequency ofclk2 .

We also allow the user to specify theoffsetfor a given
clock. This number is the first time the clock ticks. For
a clock with frequencyfreq(clk) , the offset is a num-
ber in the range[0;1/freq(clk)), i.e., it is greater or
equal to 0 and less than the period of the clock. It is use-
ful to specify offsets in order to determine a specific delay
between clocks when this is known. The syntax for off-
set constraints is the same as for frequency constraints. For
example, to specify thatclk1 and clk2 have the same
frequency, and an offset of 2ns between them, we can write:

(freq(clk1) = freq(clk2)) &&

(offset(clk1) = 0ns) &&

(offset(clk2) = 2ns)

As is the case with frequency specifications, we allow the
user to specify relationships between offsets, such as:

offset(clk1) >= offset(clk2)

We automatically verify that the constraints specified by the
user do not contradict each other, or produce values that are
illegal (such as negative frequencies or offsets that are larger
than the period).

Source Constraints These constraints specify a partition-
ing of the clock domains of the system into disjoint sets of
clocks. All clocks within one of these sets are assumed to
be synchronized, i.e., distributed without any drift. This
is used for clocks that are generated from a single source.

Formally, any events triggered at the same time by synchro-
nized clocks are assumed to be simultaneous. In contrast,
if two clocks are un-synchronized then even when they are
supposed to trigger events at the same time there could be
a slight difference between them. The syntax for specifying
that the two clocksclk1 andclk2 are synchronized is:

SYNC clk1, clk2

We only allow conjunctions of clock source constraints, no
other Boolean connectives. This is meant to make sure that
we get a strict partitioning of the clocks. Unless specified
otherwise, all clocks are assumed to be un-synchronized.

We usec1
S
= c2 to denote thatc1 andc2 are synchronized,

andc1 6
S
= c2 to denote that they are un-synchronized.

Note that two clocksc1 andc2 can be specified as syn-
chronized even when they have different frequencies. If,
for example, the frequency ofc1 is twice as high as the fre-
quency ofc2, and if there is no offset between the clocks,
every second tick ofc1 happens simultaneously with a tick
of c2. Because they are specified to be synchronized, we
model the circuit so that all flip-flops in both domains
change value at the same instant. If the clocks were un-
synchronized, we would need to consider the possibility of
a slight difference between the clock timings.

2.2 Modeling Clock Constraints

We use a discretization of time called averification tick.
This concept is similar to a simulation tick in an event-based
simulation of a design. At every verification tick each of the
clocks in the system may either tick, or not. For each clock
domainci , this is indicated by a BooleanClock Enablevari-
ablecei . In the special case of a design with a single clock
the verification tick and the clock tick are one and the same.

We translate the clock constraints described above into
a Boolean formula together with the Verilog design. This
translation process has two steps:
Step 1We translate the various clock constraints from the
specification into a state machine, where a single step of the
state machine represents exactly one verification tick. The
transitions (edges) of the state machine are labeled with sets
of clocks, each describing a valid assignment to the vari-
ablescei . A clock is enabled if it is in the set, and disabled
otherwise. This is described in Sections 3 and 4.
Step 2We unwind the state machine generated for the clock
constraints together with the Verilog design up to the given
bound, and create a Boolean formula that represents this
computation of the state machine. The details of this pro-
cess are described in Section 5.

We start with a preparation phase, in which we convert
the expression containing the clock constraints into a sum of
products (DNF). Since we expect the number of constraints

to be small, we do not anticipate a problem with the poten-
tial exponential blowup.

Let D1; : : : ;Dd denote thed terms of the DNF. These are
translated separately into finite state machinesA1; : : : ;Ad.
The final state machineA then non-deterministically picks
one of the state machinesAi , by having multiple initial
states. In the following we assume a single termD that is to
be translated into a finite state machineA.

Next, we sort the constraints inD into equality and in-
equality constraints. The set of equality constraints will
result in two state machines,Af ixed andAvariable, describ-
ing clocks with fixed and variable frequencies respectively.
The set of inequality constraints results in a third machine,
Aineq. We then create the parallel composition of the three
machines, to get the desired machineA.

3 Scalar Equality Constraints

Assume a given term of equality constraints containing
m constraints onn different clocks. The first step is to op-
timize by solving the linear equation system given by the
collection of frequency constraints. If this equation system
is unsatisfiable we inform the user of this fact. If there is
a solution to the equation system, there may be clocks that
have a unique, fixed frequency, i.e., an exact number, and
also clocks that have a variable frequency, i.e., are specified
only in relation to other clocks. Similarly, the solution to the
equation system may result in either exact or relative values
for clock offsets, if it constrains the offsets at all. For ex-
ample, in the following specificationclk1 andclk2 have
variable frequencies, while the frequency ofclk3 is fixed:

5*freq(clk1) = 3*freq(clk2) &

freq(clk3) = 150MHz

We deal with these two types of clocks separately.

3.1 Clocks with Fixed Frequency

Assume we haven clocksc1; : : : ;cn with fixed frequen-
cies freq(ci). For the time being we also assume that we
have fixed offsetsoffset(ci); we later explain how to han-
dle the general case. The state machine generated for these
clock signals follows event queue semantics. In our case, an
event is a clock tick of one of the clocks. The set of events is
E = fe1; : : : ;eng, where the eventei represents the clockci

ticking. A configurationQ of an event queue is a mapping
from the set of eventsE into the amount of time until they
occur next:

Q : E �! Q

(whereQ is the set of rational numbers).
For each eventei , Q(ei) is the time that will pass until

this event happens next. For a given configurationQ the

time of the next (closest) event is denoted byν(Q) and is
the minimum time of all events:

ν(Q) := minfQ(ei) j i = 1; : : : ;ng

Since several events can happen synchronously, there
may be more than one event withQ(ei) = ν(Q). The set
of activeeventsEa is the collection of events that are going
to happen next and is given by:

Ea
(Q) := fei jQ(ei) = ν(Q)g

For each possible configuration of the queue we generate
a state in the state machineAf ixed. The initial stateQ0 is the
initial configuration of the queue, which is determined by
the first occurrences of all events:

8ei 2 E : Q0(ei) := offset(ci)

Since each clock has a specified frequencyfreq(ci), its
clock period is given bypi = 1=freq(ci). Each configuration
Qj , for j � 0, has a single successor configurationQj+1 that
is computed by:

Qj+1(ei) :=

�
Qj(ei)+ pi : ei 2 Ea(Qj)

Qj(ei) : otherwise

Two configurationsQj , Qk are said to be equivalent if
they specify the same time differences between clocks:

Qj �Qk :() 8ei 2 E :

Qj(ei)�ν(Qj) = Qk(ei)�ν(Qk)

Since we have a finite number of clocks, each with a
fixed period, the sequenceQ0;Q1; : : : is periodic, i.e., there
exists a positive numberα such thatQα �Q0. Let α be the
smallest such number.

The finite state machineAf ixed is computed as follows:
We compute the sequenceQj up to j = α�1 or until the
BMC bound is reached. For each unique configurationQj

a state is generated. The initial state of the machine is the
state labeled withQ0. We add transitions from each stateQj

to stateQj+1. In case the period of the sequence was found
before the bound was reached, a back loop from stateQα�1

to stateQ0 is added. Furthermore, we add an idle transition
(self-loop) to each state.

We add the following constraints to the transitions: for
each stateQj , the transition from this state intoQj+1 is la-
beled by the constraintEa(Qj), i.e., all the clocks given in
the setEa(Qj) must be active during the step fromQj to
its successor, and all the clocks not in the set must be inac-
tive. Self-loops are constrained using the empty set, i.e., all
clocks inE must be inactive. These self loops are required
only when there are several machines running in parallel,
for example, when we have both fixed frequency and vari-
able frequency clocks. Each group generates a machine so
that when they are put together they enable any interleaving
of the two sets of clocks that they describe. In the final state
machine we add a constraint that at each verification tick at
least one clock is active, to eliminate computations in which
nothing happens.

Q0 Q1 Q3Q2

Ea(Q3)

Ea(Q0) Ea(Q1) Ea(Q2)

fg fg fg fg

Figure 1. Translation for synchronized clocks
with fixed frequencies

As an example, assume we have a design with two clocks
and the specification:

clk1 = 150 MHz & clk2 = 100 MHz &

SYNC clk1, clk2

There are two events in the system:e1 (for clk1 with a
period of p1 = 6:6ns ande2 (for clk2) with a period of
p2 = 10ns. Notice that the period ofe1 is actually 62

3. We
use accurate arithmetic computations to make sure that we
recognize equivalent configurations. For the purpose of this
example, we set the first occurrence (the offset) for both of
them to 10ns. The timing diagram for these clocks looks
like this:

30 40 5010 20Time
(nanoseconds)

clk1

clk2

The configurationsQj according to the above definition,
along with the events that occur in each configuration are:

Q0 = (10;10) Ea(Q0) = fe1;e2g

Q1 = (6:6;10) Ea(Q1) = fe1g

Q2 = (6:6;3:3) Ea(Q2) = fe2g

Q3 = (3:3;10) Ea(Q3) = fe1g

Q4 = (6:6;6:6)�Q0

The first configuration,Q0, is created by the two offsets.
The next configuration,Q1, is created fromQ0 by taking
both periods, since inQ0 both clocks were active. InQ1

only clk1 is active, so we haveQ2(e1) = p1, andQ2(e2) =

Q1(e2)� ν(Q1) = 10�6:6= 3:3. This continues until we
haveQ4 = (6:6;6:6), which is equivalent toQ0. Each con-
figuration generates a state in the state machine created for
this specification (Figure 1). When translated into verifica-
tion ticks we get the following clocking scheme:

Verification Tick 1 2 3 4 5 6 7 : : :

ce1 1 1 0 1 1 1 0
ce2 1 0 1 0 1 0 1

Up until now we assumed that all offsets were given
specifically, which gives us a specific initial configuration

Q0. In practice, the offsets may be totally or partially speci-
fied, using equalities and inequalities. To make sure that we
take into account all possible clock schemes we enumer-
ate all possible permutations between the clocks. For two
clocks,c1 andc2, for which there are no constraints on the
offsets, we need to generate three different clock scenarios:
one in whichc1 ticks first, one in whichc2 ticks first, and
one in which they tick together. Furthermore, ifp1 < p2

we need to consider a situation in whichc1 ticks twice (or
more) before the first time thatc2 ticks. We systematically
generate all possible scenarios, and choose representative
offset values for each scenario. Each of these generates a
different state machine (starting from a different initial con-
figuration). We put all of these together to get a machine
Af ixed that has several initial states.

When we have constraints on the clock offsets, we again
solve the linear equation system that they create. The so-
lution to this system can be translated into constraints on
the possible permutations between the clock offsets. This
enables us to generate a smaller number of scenarios and
results in a smaller machineA.

3.2 Un-Synchronized Clocks

The state machine generated above represents accurate
semantics for clocks assuming they are all synchronized,
i.e., that all events occurring at the same time are actu-
ally processed simultaneously. However, this is not a good
model of the physical world, in which events triggered by
non-synchronized clocks are rarely really simultaneous.

We model these effects by non-deterministically pick-
ing between a synchronous transition and the possible asyn-
chronous transitions. If there are two eventse1 ande2 that
are not synchronized but occur at the same time according to
the event queue, the following event orderings are allowed:
(1) The evente1 first, then the evente2, (2) the evente2

first, then the evente1, (3) the eventse1 and the evente2

simultaneously.
To illustrate why this is necessary, consider that these

two events correspond to two clock signals that clock two
latchesA and B, as shown below. Ife1 occurs first and
e2 second, the original value ofB will be present in both
latches. If both events occur simultaneously, the values of
A andB are swapped.

B

A
D

clk1

clk2

Q

QD

To model this phenomenon, we split states into sub-
states. Every stateQj that has two or more un-synchronized

1 2

43

5

Qj

fg

fc1g

fc2g

fc1;c2g

fg

fc2g fc1g

fg

fg fg

Figure 2. State machine for two un-
synchronized events e1 and e2 that occur at
the same time.

events inEa(Qj) is split into sub-states. Each sequence of
sub-states represents one possible ordering of the synchro-
nized events, allowing multiple events to occur simultane-
ously. In the case of two un-synchronized eventse1 ande2,
the stateQj is replaced by five sub-states as depicted in Fig-
ure 2. Each path represents one of the three orderings of the
events as described above.

This construction is easily generalized to any number of
un-synchronized events. Again we are not concerned with
the blow-up in the number of states of the state machine
since we do not anticipate more than a few clock domains in
a single design. For a small number of clocks the situation
where two events happen at the same time will be relatively
rare. Each such instance adds 5 states. A situation where
more than two events happen at the same time will produce
more states, but will be too rare to effect the efficiency of
the whole run. Note also that this “blow up” effects only
the machine that describes the clocks, and is independent of
the size of the design.

3.3 Clocks with Variable Frequency

This subsection describes how constraints of the form

a * freq(clk1) = b * freq(clk2)

are converted into a finite state machine. We separate the
set of clocks involved in these constraints into disjoint sets
so that the clocks in each set depend on each other, directly
or indirectly, and do not depend on clocks outside the set.
We generate a separate state machine for each of these sets.
The overall state machineAvariable then is the parallel com-
position of the state machines. Since the sets of clocks are
all disjoint, the constraints of the parallel state machines do
not affect each other.

Let c1; : : : ;cn be the clocks in one such set. We solve the
linear equation defined by the set of inequalities involving

c1; : : : ;cn. We require that the dependency between clocks
is linear, and that in the solution space of the equation sys-
tem all the axes are orthogonal. This is a restriction, but
we believe that constraints violating it are of low practical
value. It is then possible to choose a single clockc, which
we call thereference clock, and define a linear factorθ(c0)
for every other clockc0 in the set such that:

f req(c0) = θ(c0)� f req(c)

Obviously, the actual frequencies of the clocks are not
relevant, only the relationships between them. We therefore
fix the period of the reference clock to 1, and the period of
any other clockc0 to 1=θ(c0). The state machine for this set
of clocks is generated as described in subsection 3.1.

It should be noted that whenever we create a parallel
composition of more than one state machine we generate a
slight over-abstraction of the behavior of the design. This is
because there is no bound on the number of times each ma-
chine can take the idle transition. In theory, we may have
a counter example in which one machine takes many steps,
while the other is idle, and then the second machine takes
several steps while the first machine is idle. This compu-
tation cannot happen in reality, since it corresponds to un-
stable clocks that change frequencies during the computa-
tion. However, since we are using bounded model check-
ing, the counter example is the shortest possible, so it will
include the minimum number of idle transitions. It is our
experience that in such examples it is usually (though not
always) the case that the problem is real, even if the behav-
ior of the clocks is not exactly realistic. One of our future
research goals is to create an algorithm that will automati-
cally detect this situation, and check whether there is a sim-
ilar counter example in which the clock frequencies behave
realistically.

4 Inequality

We next describe how constraints of the form

a � freq(c1) � b � freq(c2) (1)

are converted into a finite state machineAineq. For effi-
ciency reasons, this conversion is not exact but an over-
approximation, i.e., all behaviors allowed by the exact con-
straints are also allowed by our approximation, but our ap-
proximation allows additional behaviors.

As a first step, the constraint is transformed using an aux-
iliary clock variable, here denoted byc01, with a frequency
that is a=b times the frequency ofc1. This clock is also
synchronized to the clockc1.

freq(c01) =
a
b

freq(c1) ^ c01 =s c1 (2)

The offset ofc01 is the offset ofc1 adjusted accordingly
to the factorsa andb:

offset(c01) =
a
b

offset(c1) (3)

1 2

fc2gfg;fc0

1;c2g;fc2g

fc0

1g

fg

Figure 3. State machine for two clocks c01 and
c2: c01 is enforced to be slower than c2.

The frequency equality constraint (2) is converted to a
state machine as described in subsection 3.3. We can now
rewrite (1) as follows:

freq(c01) � freq(c2) (4)

We over-approximate this constraint using a state ma-
chine with two states,s1 ands2, as shown in Figure 3. This
machine is intended to make sure that the faster clock ticks
at least as many times as the slower one. The first state,
s1, is the initial state, and is used to indicate that the faster
clock c2 has made a tick after or at the same time as the
slower clockc01. The second state,s2, indicates that the
slower clock has made a tick after the last tick of the faster
clock. This is realized by adding three transitions: (1) A
self loop ons1 requires the faster clockc2 to tick. It does
not constrain the slower clockc01, it may or may not tick. (2)
A transition froms1 to s2 requires the fasterc2 clock not to
tick, and the slower clockc01 to tick. (3) A transition from
s2 back tos1 requires that the faster clockc2 ticks, while
the slower clockc01 is not allowed to tick. In addition to the
transitions above, we add an “idle” transition to both states,
which allows none of the clocks to tick.

5 Implementation in the context of BMC

The input to the tool is an ANSI–C program with em-
bedded assertions, and a Verilog design. The C program
can refer to the values of signals in the Verilog design at
any clock cycle. Verification is performed by transforming
the C program, the Verilog design, and the assertions into a
bit-vector equation such that a solution to the equation rep-
resents a counterexample. This equation is translated into
a CNF formula and handed to an efficient SAT solver. If
some assertion fails, the satisfying instance given by the
SAT solver is presented to the user in the form of a coun-
terexample execution, which includes both the C program
execution and the Verilog execution sequence.

To use our method in the context of SAT based Bounded
Model Checking, we need to create a Boolean formula that
represents a bounded number of steps of the design, fol-
lowing the clocking scheme given by the state machineA.
Let k be the model checking bound. The state machineA
is unwound in the classical way fork steps. We assign a

variableVl
A for the state ofA at verification tickl . We cre-

ate clauses that represent the (possibly non-deterministic)
transition relation ofA so that any satisfying instance to the
resulting Boolean formula assigns the variablesV1

A ; : : : ;V
k
A

with a valid path inA.
Next, we need to make sure that each clock ticks when

it should. For this we use the precomputed setsEa for each
state ofA. We generate clauses that specify that

V j
clki

= 1, ei 2 Ea
(V j

A)

We continue with the same example of Figure 1. Let the
model checking bound bek= 3. The formula we create will
use the variablesV0

A ; : : : ;V
3
A to keep the current state inA.

Recall that different values for the first occurrence of each
clock result in different state machines. Let us assume that
the state machine depicted in Figure 1 isA1, and the global
state machineA chooses non-deterministically betweenA1

and another machine, calledA2. LetR0 be the initial state of
A2. The formula we generate will be the conjunction of sev-
eral sub-formulas. The first defines the non-deterministic
choice betweenA1 andA2:

f1 := (V0
A = Q0) _ (V0

A = R0)

Next, we generate a formula that represents the transition
relation ofA1:

f2 :=
^

j=0;:::;2

(V j
A = Q0!V j+1

A = Q1)^

(V j
A = Q1 !V j+1

A = Q2) : : :

We do the same for the transition relation ofA2, resulting
in a formula f3. Next, we create a formula that specifies
when each clock should tick:

f4 :=
^

j=0;:::;3

(V j
A = Q0!V j

clk1
^V j

clk2
)^

(V j
A = Q1!V j

clk1
^V j

clk2
) : : :

Again we have a similar formulaf5 for A2.
Finally, we conjoin the formulasf1; : : : ; f4 and transform

them into CNF. The resulting formula is passed to the SAT
checker, along with the CNF formulas of the Verilog design,
the C specification, and the assertions that are to be proven.

6 Experiments

A Serializer The serializer takes two clock signalscp and
cs as input. In addition to that, an eight bit data word is
read from the environment whencp ticks. The word is sent
out bit by bit on every tick ofcs . The C program waits for
cp to tick, stores the data word in a local variable and then
compares it to the output on the serial side. The frequency
of the clockcs needs to be eight times the frequency ofcp .
This is realized by the following constraint:

f(cs)=8*f(cp) & SYNC(cs,cp)

This constraint generates about 210 clauses and 63 literals
per transition.

A FIFO This design was given to us by Marvell [2]. It
is a FIFO that is used to transfer data packets between two
clock domains in a communications switch. The design is
implemented using two internal FIFOs, and it switches be-
tween them on every packet. The unique feature of this de-
sign is that it uses the same FIFO to transfer both data and
control. This is an obstacle for symbolic model checking al-
gorithms, and in fact this design could not be verified using
SMV based model checkers.

The fifo is meant to operate under specific conditions.
The two clock domains are not synchronized, and need not
have exactly the same frequency, but the frequencies must
be very close. Because the fifo has no overrun/underrun de-
tection, it will fail to operate properly if the difference be-
tween the clocks is too large. The environment that drives
packets into the FIFO will always insert a certain delay
between two consecutive packets, so that the FIFO has a
chance to “catch up” even if output clock is slower than
the input clock. The question is – what is the minimum
number of clock cycles between packets that guarantees no
overflow? Without the ability to specify the relationship be-
tween the clocks, the design can only be verified using a
specific ratio that would be coded by hand. However, the
FIFO needs to be verified under several different possibil-
ities, which could prove difficult to check manually. Our
method allows us to specify a more general environment.
The clock specification we used is as follows:

freq(clk in) >= 100 MHz

freq(clk out) >= 0.9*freq(clk in)

freq(clk out) <= 1.1*freq(clk in)

These constraints result in the clocks either alternating or
ticking together, with the possibility of one clock ticking
twice every now and then, but not more than once every
10 clock cycles. We verified the design with a bound of
50. With this bound, the clock constraints generated about
33000 clauses, out of the overall 2 million clauses that were
given to Chaff. This shows that the overhead for using clock
constraints is not significant.

Another interesting feature of this design is that it ex-
pects packets to be of at least length 5. Our tool took sec-
onds to show a scenario where a packet of length less than
5 is dropped.

7 Conclusion and Future Work

We have shown how complex relationships between
clocks in a design can be specified for use in formal veri-
fication. We translate clock constraints into state machines
that represent all possible clock schemes. These state ma-
chines can be used in a variety of ways.

While we have presented an implementation for bounded
model checking, our results are equally applicable to “un-
bounded” classical model checking. Instead of unwinding

the machine that represents the clock constraints, we create
a model of the machine and add it to the transition relation
of the design. This can be used to add support for multi-
ple clock systems toSymbolic Model Checking, as well as
Automata Based Model Checking[4].

This work has opened to us several directions for contin-
ued research. We believe that these ideas could lead to an in-
novative way of verifying asynchronous circuits, which are
circuits that do not use clocks. These systems are usually
simulated using an event-driven semantics, which fits with
our event-driven queue semantics using state machines.

References

[1] Accellera website.http://www.accellera.org .

[2] http://www.marvell.com.

[3] P. Bjesse, T. Leonard, and A. Mokkedem. Finding bugs in
an Alpha microprocessor using satisfiability solvers. InPro-
ceedings of CAV 2001, volume LNCS 2102, pages 454–464.
Springer Verlag, 2001.

[4] E. Clarke, O. Grumberg, and D. Peled.Model Checking.
MIT Press, December 1999.

[5] E. Clarke and D. Kroening. Hardware verification using
ANSI-C programs as a reference. InProceedings of ASP-
DAC 2003, pages 308–311. IEEE Computer Society Press,
2003.

[6] F. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A. Tac-
chella, and M. Y. Vardi. Benefits of bounded model checking
at an industrial setting. InProceedings of CAV 2001, volume
LNCS 2102, pages 436–453. Springer Verlag, 2001.

[7] Daniel Kroening and Ofer Strichman. Efficient computation
of recurrence diameters. In4th International Conference on
Verification, Model Checking, and Abstract Interpretation,
volume LNCS 2575, pages 298–309. Springer Verlag, 2003.

[8] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang,
and S. Malik. Chaff: Engineering an efficient SAT solver.
In Proceedings of the 38th Design Automation Conference
(DAC’01), June 2001.

[9] http://www.haifa.il.ibm.com/formalm.html.

[10] http://www.systemc.org.

[11] L. Séméria, A. Seawright, R. Mehra, D. Ng, A. Ekanayake,
and B. Pangrle. RTL C-based methodology for designing
and verifying a multi-threaded processor. InProceedings of
the 39th Design Automation Conference. ACM Press, 2002.

[12] O. Shtrichman. Tuning SAT checkers for bounded model
checking. InProceedings of CAV 2000, volume LNCS 1855.
Springer Verlag, 2000.

[13] http://www-cad.eecs.berkeley.edu/respep/research/vis/.

[14] K. Yorav, S. Katz, and R. Kiper. Reproducing synchroniza-
tion bugs with model checking. InProceedings of CHARME
2001, volume LNCS 2144. Springer, 2001.

