
Counterexample Guided Abstraction Refinement via
Program Execution

Daniel Kroening, Alex Groce and Edmund Clarke 1�

Department of Computer Science
Carnegie Mellon University

Pittsburgh, PA, 15213

Abstract. Software model checking tools based on a Counterexample Guided
Abstraction Refinement (CEGAR) framework have attained considerable suc-
cess in limited domains. However, scaling these approaches to larger programs
with more complex data structures and initialization behavior has proven diffi-
cult. Explicit-state model checkers making use of states and operational seman-
tics closely related to actual program execution have dealt with complex data
types and semantic issues successfully, but do not deal as well with very large
state spaces. This paper presents an approach to software model checking that
actually executes the program in order to drive abstraction-refinement. The in-
puts required for the execution are derived from the abstract model. Driving the
abstraction-refinement loop with a combination of constant-sized (and thus scal-
able) SAT-based simulation and actual program execution extends abstraction-
based software model checking to a much wider array of programs than current
tools can handle, in the case of programs containing errors.

1 Introduction

1.1 Software Verification using Predicate Abstraction

Software model checking has, in recent years, been applied successfully to real soft-
ware programs, within certain restricted domains. Many of the tools that have been in-
strumental in this success have been based on the Counterexample Guided Abstraction
Refinement (CEGAR) paradigm [Kur95,CGJ+00], first used to model check software
programs by Ball and Rajamani [BR00]. Their SLAM tool [BR01] has demonstrated
the effectiveness of software verification for device drivers. BLAST [HJMS02] and
MAGIC [CCG+03] have been applied to security protocols and real-time operating
system kernels.

� This research was sponsored by the Gigascale Systems Research Center (GSRC), the Na-
tional Science Foundation (NSF) under grant no. CCR-9803774, the Office of Naval Research
(ONR), the Naval Research Laboratory (NRL) under contract no. N00014-01-1-0796, and by
the Defense Advanced Research Projects Agency, and the Army Research Office (ARO) un-
der contract no. DAAD19-01-1-0485, and the General Motors Collaborative Research Lab
at CMU. The views and conclusions contained in this document are those of the author and
should not be interpreted as representing the official policies, either expressed or implied, of
GSRC, NSF, ONR, NRL, DOD, ARO, or the U.S. government.

A common feature of the success of these tools is that the programs and proper-
ties examined did not depend on complex data structures. The properties that have been
successfully checked or refuted have relied on control flow and relatively simple integer
variable relationships. For device drivers, and at least certain properties of some proto-
cols and embedded software systems, this may be sufficient. However, even the pres-
ence of a complex static data structure can often render these tools ineffective. SLAM,
BLAST, and MAGIC rely on theorem provers to perform the critical refinement step,
and the logics used do not lend themselves to handling complex data structures, and may
generally face difficulties scaling to very large programs. Explicit-state model checkers
that (in a sense) actually execute a program, such as JPF [VHB+03], Bogor [RRDH04],
and CMC [MPC+02], on the other hand, can handle complex data structures and oper-
ational semantics effectively, but do not scale well to proving properties over large state
spaces, unless abstractions are introduced. The approach described and implemented in
the CRunner tool combines the advantages of these approaches: an abstract model is
produced and refined based on information obtained from actually executing the pro-
gram being verified. The abstract model is used to provide inputs to drive execution and
the results of execution are used to refine the abstract model. Although this does not re-
duce the difficulty of proving a program correct (the model must eventually be refined
to remove all spurious errors), this method can be used to find errors in large programs
that were not previously amenable to abstraction-refinement based model checking.

1.2 Counterexample Guided Abstraction Refinement

C Prog

Spec ϕ

ϕ true

ϕ false +

counterexample

Counterexample

Model -

Checking

Spurious?

Predicate

Abstraction

Predicate
Refinement

Boolean Program

ϕ

Spurious
Counterexample

Fig. 1. The Counterexample Guided Abstraction Refinement Framework.

The traditional Counterexample Guided Abstraction Refinement framework (Figure
1) consists of four basic steps:

1. Abstract: Construct a (finite-state) abstraction A(P) which safely abstracts P by
construction.

2. Verify: Use a model checker to verify that A(P) |= ϕ: i.e., determine whether the
abstracted program satisfies the specification of P. If so, P must also satisfy the
specification.

3. Check Counterexample: If A(P)¬ |= ϕ, a counterexample C is produced. C may
be spurious: not a valid execution of the concrete program P. SLAM, BLAST, and
MAGIC generally use theorem prover calls and forward or back-wards propagation
of weakest preconditions or strongest postconditions to determine if C is an actual
behavior of P. If C is not spurious, P does not satisfy its specification.

4. Refine: If C is spurious, refine A(P) in order to eliminate C, which represents be-
havior that does not agree with the actual program P. Return to step 1 1.

1.3 Counterexample Guided Abstraction Refinement via Program Execution

The Abstract, Verify, Check, and Refine steps are also present in the execution-based
adaption of the framework. However, the Check stage relies on program execution to
refine the model. The basic approach can be seen as a combination of the typical Coun-
terexample Guided Abstraction Refinement steps with a depth-first exploration of the
program’s execution behavior.

Figure 2 presents a high level view of the execution-based refinement loop.
Consider the simple example program shown in Figure 3. The first step is to re-

compile the program. Wherever the original program uses library calls to obtain input
(whether from a socket, a file, or a user), a call to CRunner is inserted. In this case,
the call to getchar will pass through to the model checker, which will provide the
program with an input value.

The next step is to run the program. Execution will proceed normally until an input
is required. For example.c, the first call to the model checker will occur when the
while loop is entered. CRunnerwill model check an (initially very coarse) abstraction,
starting from an initial state determined by the program state of the running program.
In this case, the coarse abstraction will indicate that the assertion may be violated if
any value other than EOF is returned by getchar. The use of conservative abstraction
ensures that if no error trace is found in the abstract model, the program cannot reach an
error from the current state. If, as in this initial state there are no states on the stack, this
completes verification and guarantees that the program cannot violate any assertions.

On the other hand, as with example.c, a counterexample may exist in the ab-
stract model. Because the abstraction contains no predicates, the model checker will
determine that from the initial abstract state, the assertion can be violated in one step
(the abstract model, recall, contains no information about the value of i).

CRunner uses Bounded Model Checking and a SAT solver [KCL04] to concretize
the abstract error trace. From an initial state in which i is 100, any input other than
EOF will cause an assertion violation. An arbitrary non-EOF input generated by the
SAT solver is provided to the program, and execution continues. It is important to note
that if example.c had included a guard at the beginning of the while loop checking
that i < 100, the SAT solver would have been unable to produce an input violat-
ing the assertion, and the abstraction would have been refined to exclude the spurious
execution. CRunner does not assume that the entire abstract counterexample can be un-
wound and concretized: it only assumes that the current input value can be concretized.

1 This process may not terminate, as the problem is in general undecidable.

execute program
BUG

FOUND
Assertion violated?

program does input

refine if necessary

compile program

use abstract model to get input

no error trace founderror trace found

NO
BUG

no state
to pop?pop stateconcretize trace

push state

Fig. 2. Counterexample Guided Abstraction Refinement via Program Execution

int main() {
char buffer[100];
unsigned i=0;
int ch;
while((ch=getchar())!=EOF) {
assert(i<100);
buffer[i++]=ch;

}
}

Fig. 3. example.c

If execution behavior deviates from the abstract counterexample, the model checker
will backtrack.

The program again reaches a call for input. The initial abstract state remains un-
changed, but the program state has changed, so there is no need to backtrack. The model
checking and BMC results can be reused, as the abstraction and initial state remain un-
changed. The loop will iterate 100 times, incrementing i until the assertion is violated.
Previous Counterexample Guided Abstraction Refinement based model checkers would
have been forced to generate predicates for the value of i in order to produce a non-
spurious counterexample. CRunner is able to generate a counterexample without refin-
ing the model, and with only one call to the expensive model checking and concretiza-
tion steps. The speed of model checking, in this case, should be roughly comparable to
actual execution speed.

Outline In section 1.4, we discuss related work. In section 2, we show how the pro-
gram that is to be verified is modified prior compilation. In section 3 we describe the
algorithm and implementation details. In section 4, we provide experimental results.
We conclude in section 5 and point out directions for future research.

1.4 Related Work

The verification approach presented in this paper is based on a Counterexample Guided
Abstraction Refinement framework [CGJ+00,Kur95] in which spurious counterexam-
ples are detected and eliminated by a combination of Bounded Model Checking and
program execution. Abstraction-refinement for software programs was introduced by
Ball and Rajamani [BR00], and is a widely used approach for software model checking,
represented by the well known SLAM, BLAST and MAGIC tools [BR01,HJMS02,CCG+03].
These tools all rely on theorem provers to determine if an abstract counterexample CE
represents an actual behavior of a program P [BR02,PR02,CCG+04].

A second popular approach to software model checking is to rely on either actual
execution of a program or on a model with similar operational semantics to actual ex-
ecution. Tools following this method include VeriSoft [God97], JPF [VHB +03], Bogor
[RRDH04], and CMC [MPC+02]. While some of these tools provide a degree of au-
tomated abstraction, reduction to Boolean Programs or LTS models is not an essential
part of the model checking process.

This paper presents a meeting of these two approaches: a program is executed in or-
der to drive the refinement of an abstract model of that program, and the inputs provided
to the executing program are derived from the abstract model.

Predicate-complete test coverage [Bal03,Bal04] is conceptually related in that it
combines predicate abstraction with a testing methodology. However, the final aims are
fundamentally different: the coverage approach, as the name suggests, seeks to build
a better test suite by using a measure of coverage. The method presented in this paper
executes a program, but uses the information obtained to guide an abstraction refine-
ment framework towards exhaustive verification or refutation of properties rather than
to produce test cases.

2 Preparing the Program

The first step is to re-compile the program that is to be verified. Before compilation, we
automatically make the following changes:

1. For each function, we add a variable. This variable is set to a constant prior to each
call of the function. The constant is derived from the position of the call in program
order. The information maintained in these variables rougly corresponds to the call
stack, and allows us to distinguish the various instances of the functions at run-time
without function inlining. As we do not permit recursion, one variable per function
is sufficient.

2. Any calls to operating system input or output (I/O) functions are replaced by calls
to CRunner. The CRunner code is linked together with the program that is to be
verified. Examples of I/O functions are printf, getc, and time.

We replace the functions in the I/O library by prefixing the function name with
CRUNNER . As example,printf becomes CRUNNER printf. For each I/O function
within the I/O library, we have a replacement. If the function performs output, the output
is simply discarded. If the function performs input, we call the model checker to obtain
an input value. This is done using three functions declared as follows:

unsigned char crunner_get_byte();
int crunner_get_int();
_Bool crunner_get_bool();

We collectively refer to these functions as the crunner get functions.
As an example, consider the implementation that replaces fgetc in figure 4. It may

either return an error, indicated by return value −1, or return a byte corresponding to
data from an input stream. The first choice is made by a call to crunner get bool,
while the data value is obtained from crunner get byte. This implementation can
be extended in order to catch more program errors, e.g., it should assert that stream
is actually a valid pointer to a FILE object.

Figure 5 shows our replacement for fprintf. The data that is to be written is
simply ignored. The function crunner get int is used to obtain the return value.
Again, more errors could be detected by checking the arguments passed to the functions
using assertions.

int CRUNNER_fgetc(FILE *stream) {
// EOF or not?
if(crunner_get_bool()) return -1;
return crunner_get_byte();

}

Fig. 4. Replacement for fgetc

int CRUNNER_fprintf(FILE *stream, const char *format, ...) {
return crunner_get_int();

}

Fig. 5. Replacement for fprintf

3 Abstraction Refinement with Program Execution

3.1 Overview

CRunner is structurally similar to an explicit state model checker performing depth-
first-search (DFS): it maintains a stack of states and performs backtracking after ex-
haustively exploring branches of the search tree. CRunner does not store all visited
states on the stack – it is only necessary to store states just prior to input calls.

3.2 Execution with Trapping of Input

As described in the previous section, all calls to the I/O functions provided by the oper-
ating systems are replaced with versions that invoke the model checker.

The program is executed until I/O is performed or an assertion is violated. Note that
we therefore are unable to detect infinite loops without input within the program.

Assertions include explicit assertions as given by the user within the code, and au-
tomatically generated assertions. Automatically generated assertions are used to detect
errors such as dereferencing of NULL pointers, out of bounds indexing, or dereferencing
of objects that have exceeded their lifetime.

When an assertion violation occurs, the process aborts with an error message. In
contrast to existing tools that use a theorem prover or SAT solver to perform the simu-
lation step, we are unable to produce a counterexample trace in this case. However, we
output the sequence of inputs that results in the violated assertion.

If the program produces output, the output data is simply discarded and the program
execution resumes normally. Note that file system function calls such as remove are
also considered to be output functions.

It is when the program performs input that program execution is suspended, and the
model checker is able to guide execution. CRunner uses the abstract model in order to
produce an input value. This is described in the next section.

3.3 Generating the Abstract Model

Existential Abstraction We perform a predicate abstraction [GS97] of the ANSI-C
program: i.e., the variables of the program are replaced by Boolean variables that corre-
spond to a predicate over the original variables. As we are not using pushdown automata
to verify the abstract program, we simply inline any function calls within the abstract
program. Otherwise, the control flow structure of the program remains unchanged.

Formally, we assume that the algorithm maintains a set of n predicates π 1, . . . ,πn.
Let S denote the set of concrete states. The predicates are functions that map a concrete

state x ∈ S into a Boolean value. When applying all predicates to a specific concrete
state, one obtains a vector of n Boolean values, which represents an abstract state x̂.
We denote this function by α(x). It maps a concrete state into an abstract state and is
therefore called the abstraction function.

We perform an existential abstraction [CGL92], i.e., the abstract machine can make
a transition from an abstract state x̂ to x̂ ′ iff there is a transition from x to x′ in the
concrete machine and x is abstracted to x̂ and x ′ is abstracted to x̂′. Let R denote the
transition relation of the concrete program. We call the abstract machine T̂ , and we
denote the transition relation of T̂ by R̂.

R̂ := {x̂, x̂′ | ∃x,x′ ∈ S : xRx′∧
α(x) = x̂∧α(x′) = x̂′} (1)

Abstraction using SAT A SAT solver can be used to compute R̂ [CKSY04]. The main
idea is to form a SAT equation containing all the predicates, a basic block, and two
symbolic variables for each predicate: one variable for the state before the execution
of the basic block, and one variable for the state after its execution. The SAT solver is
then used to obtain all satisfying assignments in terms of the the symbolic variables.
The technique has also been applied to SpecC [JKC04], which is a concurrent version
of ANSI-C.

One advantage of this technique is that it models all ANSI-C bit-vector operators
precisely. In contrast, tools using theorem provers such as Simplify [DNS03] model the
program variables as unbounded integers, and do not model the proper semantics for
overflow on arithmetic operators. These tools typically treat bit-vector operators such
as shifting and the bit-wise operators as uninterpreted functions.

However, the runtime of the SAT-based existential abstraction typically grows ex-
ponentially in the number of predicates. Most tools therefore do not compute a precise
existential abstraction, but compute an over-approximation of the existential abstrac-
tion. One approach to over-approximation is to partition the set of predicates into sub-
sets of limited size. Abstraction is then carried out for each of the subsets separately.
The resulting transition relations are then conjuncted. Note that this over-approximation
results in additional spurious behavior.

We use the set of variables mentioned in the predicates in order to group together
related predicates. However, techniques for computing over-approximations of the ex-
istential abstraction are beyond the scope of this paper.

Prior to abstraction, any calls to one of the crunner get functions are simply
replaced by unique free variables ν1, . . . ,νq. The SAT solver performs an existential
quantification for these variables, as done for any other program variable.

Verification of the Abstract Model using NuSMV The result of the SAT-based ab-
straction is a symbolic transition relation for each basic block. We build a NuSMV
[CCG+02] model for the abstraction. Prior to building the abstract model, we trans-
form the program into a guarded goto program, i.e., all control statements such as
if, while, for are replaced by guarded gotos. The control flow is then encoded by

means of a simple program counter (PC) construction. The transition relations for the
basic blocks is directly given to NuSMV by means of TRANS statements.

Note that the initial program counter is not the location of the first instruction in
the concrete program. Instead, we use the location of the first input call as the initial
PC. This location can be determined at run-time using the values that are set for each
function prior to the calls of the functions, as described above.

As CRunner over-approximates program behaviors, if the property holds on all
states reachable from the input location within the abstract program, it also holds on
all states reachable from the input location within the original, concrete program.

If NuSMV returns that no error trace was found, we proceed as follows: as the PC is
not the initial program location, CRunner cannot conclude that there are no bugs in the
program. We can only conclude that there are no bugs reachable from the input location.
In this situation, we examine the DFS stack:

– If the stack contains a state, let s denote the state on top of the stack. Further-
more, let s′ denote the current state of the program. We have exhaustively searched
all paths originating from the state s′. Thus, we can remove the path from s to s ′
from the abstract model. After that, we backtrack to the state s, i.e., we restore the
program state to the state s and then pop the state s off the stack. The algorithm
proceeds with generating an input in state s.

– If the stack contains no more states, we are at the very first input location within
the program, and we can conclude that the program has no bugs. The algorithm
terminates.

If, however, NuSMV finds an error trace in the abstract model originating from the
input location, we aim at concretizing parts of the abstract trace in order to extract an
input value. This is described in the next section.

3.4 Concretizing the Abstract Trace

If the model checker finds an error trace in the abstract model, this does not imply that
such a trace also exists in the concrete model. This is due to the fact that the abstract
model is an over-approximation of the original program. An abstract trace without any
corresponding trace in the concrete model is called a spurious trace.

Existing tools for predicate abstraction of C programs build a query for a theorem
prover by following the control flow given by the abstract error trace. If the query is
satisfiable, a concrete error trace exists. The data values assigned along the trace and
input values read along the trace can be extracted from the satisfying assignment. This
is usually called simulation of the abstract trace on the concrete program, and is im-
plemented as described above by SLAM, BLAST, and MAGIC. Incremental SAT has
also been used to perform the simulation step [CKSY04], but the principle remains the
same.

In large programs, in particular in the presence of dynamic data structures, error
traces may easily have a thousand or more steps. The simulation of these long abstract
traces quickly becomes infeasible as the program size and complexity increases. Thus,
in contrast to the existing tools, we do not aim at simulating the abstract trace by means
of a theorem prover or SAT solver.

Instead, we want to continue the execution of the program after the input location.
We aim at returning an input value to the program that will guide the program along the
abstract trace to the error location found within the abstract model.

We obtain this input value as follows: we build a simulation query similar to ex-
isting tools. However, we limit the depth of the query to a few steps. This should curb
the computational effort required for the query, but may still provide sufficient infor-
mation to compute the next input value. This is motivated by the fact that programs
often perform control flow decisions based on the input values they read within a few
instructions after the input is performed.

Partial Simulation using SAT Let the counterexample trace have k steps, and let k ′ ≤ k
be the depth (number of steps) we use to obtain the input value. The simulation requires
a total of k′ SAT instances. Each instance adds constraints for one more step of the
abstract counterexample trace. We denote the value of the (concrete) variable v after
step i by vi. All the variables v inside an arbitrary expression e are renamed to v i using
the function ρi(e).

The SAT instance number i is denoted by Σ i and is built inductively as follows: Σ0

(for the empty trace) is defined to be true. For i ≥ 1, Σ i depends on the type of statement
of state i in the counterexample trace. Let pi denote the statement executed in the step
i. As described above, we use guarded goto statements to encode the control flow.

Thus, if step i is a guarded goto statement, then the (concrete) guard g of the goto
statement is renamed and used as conjunct in Σ i. Furthermore, Σi−1 is added as a con-
junct in order to constrain the values of the variables to be equal to the previous values:

pi = (goto,g, l) −→ Σi := Σi−1 ∧ρi(g)∧
^

u∈V

ui = ui−1

If step i is an assignment statement, the equality for the assignment statement is
renamed and used as conjunct:

pi = (v:=exp) −→ Σi := Σi−1 ∧
ρi(v) = ρi−1(exp)∧

^

u∈V\{v}
ui = ui−1

As done during abstraction, any calls to one of the crunner get functions within
the right hand side are simply replaced by unique free variables ν 1, . . . ,νu.

Note that in case of assignment statements, Σi is satisfiable if the previous instance
Σi−1 is satisfiable. Thus, the check only has to be performed if the last statement is a
guarded goto statement. If the last instance Σk′ is satisfiable, the partial simulation is
successful.

In this case, the SAT solver provides us with a satisfying assignment, which contains
values for all variables in Σk′ . This includes, in particular, a value for the first input ν1.
We simply use this value as return value of the crunner get function call, and return
control to the program that is to be verified. Prior to returning control, we save the input

value, the state, and the abstract trace we expect to see on the concrete program on the
DFS stack.

If the partial simulation fails, the abstract counterexample is spurious, and the ab-
stract model must be refined, as described in the next section. After refinement, we
attempt to find another abstract error trace starting from the same concrete state.

3.5 Refining the Abstract Model

We have two ways to detect spurious behavior in the abstact model: first, as in the
traditional refinement loop, we perform a simulation. While this simulation is bounded,
it still allows us to detect some spurious behavior.

The second way to detect spurious behavior is during execution: If the executed
trace diverges from the expected abstract trace, we check if the abstract trace is spurious.

Following a distinction introduce in the context of hardware verification [CTW03],
we distinguish two potential sources of spurious behavior in the abstract model:

1. The abstract counterexample may be found to be spurious because we are not per-
forming a precise existential abstraction. Instead, we partition the predicates, which
may result in spurious transitions in the abstract model.

2. The abstract counterexample may be spurious because of the abstraction is based
on too few predicates. This is referred to as a spurious prefix [CTW03].

SLAM uses the following approach to distinguish these two cases [BCDR04]: first,
SLAM assumes that the spurious counterexample is caused by a lack of predicates and
attempts to compute new predicates using weakest preconditions of the last guard in the
query. If new predicates are added, the refinement loop continues as usual. However,
if the refinement process fails to add new predicates, a separate refinement procedure,
called Constrain is invoked.

Following Wang, et al., [CTW03], we first check whether any transition in the ab-
stract trace is spurious. If so, we refine the abstract model. The conflict graph is analyzed
in order to eliminate multiple spurious transitions with one SAT solver call [CTW03].
This technique is also applicable to software. However, the refinement of spurious tran-
sitions is beyond the scope of this paper.

If no transitions are spurious, the spurious counterexample must be caused by a lack
of predicates. In this case, we compute new predicates by means of weakest precondi-
tions in a similar fashion to the various existing predicate abstraction tools.

4 Experimental Results

We implemented a prototype implementation of the algorithm described in the previous
section and report experimental results on a number of ANSI-C programs. The exper-
iments are performed on a 1.5 GHZ AMD machine with 3 GB of memory running
Linux.

We first investigate a scalable, artificial example with a buffer overflow after n bytes
of input from a file. Existing tools usually require an abstract trace of at least n steps
in order to find such a bug. Furthermore, they use a theorem prover or SAT solver to

concretize such an abstract trace. The run-time of these tools is typically exponential in
n.

Table 1 contains the run-times for the artificial benchmark for various increasing
values of n and the run-time of a conventional implementation using SMV and SAT.
Note that for this example, most of the results in the loop can be cached, and thus, are
only performed once. Even for very large n, the run-time is completely dominated by
the compilation.

On the other hand, the conventional implementation degrades very quickly, as it has
to refine n times, adding a single new predicate for the array index every time. However,
it provides a full counterexample trace.

We also report the time to prove a correct version, which guards agains the buffer
overflow. The conventional refinement loop is faster as no compilation is needed. How-
ever, the run-time (and almost all of the behavior) is the same after the execution starts.
It does not depend on n.

n
Method 10 50 100 1000 10,000 100,000 no bug

Execution 1.5s 1.5s 1.5s 1.5s 1.5s 1.5s 1.5s
Conventional 41.4s 700s * * * * 0.01s

Table 1. Comparison of proposed algorithm and conventional implementation on artificial exam-
ple with a buffer overflow after n bytes of input from a file. The run-times include the compilation
time for the execution method. A star * denotes a time-out.

We also experimented with software obtainable from the internet. Spamassassin is
a tool for filtering email messages. Most of it is written in Perl, but it has a frontend
written in ANSI-C for efficiency reasons. Version 2.43 contains a (previously known)
off-by-one error in the BSMTP interface. Figure 6 shows the relevant parts of the code.

The buffer overflow is triggered due to the special treatment of the dot in BSMTPD.
Due to the large size of the buffer (1024), a long input stream is required to trigger the
bug. Our conventional predicate refinement loop could not detect this overflow error
within reasonable time. The execution-based implementation only required 3 seconds
(most of which are spent in compilation) to detect the error and to produce an input
stream that triggers it.

We also experimented with sendmail, a commonly used mail gateway for Unix
machines. We were able to reproduce previously known errors that are triggered by
specially crafted email-messages. As an example, due to a faulty type conversion, the
ASCII character 255 was used to exploit older versions of sendmail. The execution-
based approach generates the necessary input sequence to trigger the bug, while the
conventional implementation was unable to find it due to the required length of the
traces.

char buffer[1024];
[...]
switch(m->type){

[...]
case MESSAGE_BSMTP:

total = full_write(fd, m->pre, m->pre_len);
for(i = 0; i < m->out_len;) {

jlimit = (off_t) (sizeof(buffer) /
sizeof(*buffer) - 4);

for(j = 0; i < (off_t) m->out_len && j < jlimit;) {
if(i + 1 < m->out_len && m->out[i] == ’\n’ &&

m->out[i+1] == ’.’) {
if(j > jlimit - 4)

break; /* avoid overflow */
buffer[j++] = m->out[i++];
buffer[j++] = m->out[i++];
buffer[j++] = ’.’;

} else {
buffer[j++] = m->out[i++];

[...]

Fig. 6. Code from spamc

5 Conclusions and Future Work

We present a variant of the counterexample guided predicate abstraction framework in-
troduced by Ball and Rajamani [BR00]. Explicit-state model checkers making use of
states and operational semantics closely related to actual program execution have dealt
with complex data types and semantic issues successfully, but do not deal as well with
very large state spaces. We therefore combine techniques from abstraction refinement
and explicit state modelchecking: In order to prove the property correct, we use the ab-
straction refinement. In order to disprove the property, we actually execute the program.

Experimental results indicate that no advantage over the existing approaches are
obtained if proving correctness is the goal. However, the execution-based simulation
approach allows to find bugs that have very deep error traces. The existing tools typ-
ically use theorem provers or SAT for the simulation of the error traces, which have
exponential run-time in the length of the error trace.

References

[Bal03] T. Ball. Abstraction-guided test generation: A case study. Technical Report 2003-86,
Microsoft Research, November 2003.

[Bal04] T. Ball. A theory of predicate-complete test coverage and generation. Technical
Report 2004-28, Microsoft Research, April 2004.

[BCDR04] Thomas Ball, Byron Cook, Satyaki Das, and Sriram Rajamani. Refining approxima-
tions in software predicate abstraction. In Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), pages 388–403. Springer-Verlag, 2004.

[BR00] T. Ball and S.K. Rajamani. Boolean programs: A model and process for software
analysis. Technical Report 2000-14, Microsoft Research, February 2000.

[BR01] T. Ball and S. Rajamani. Automatically validating temporal safety properties of inter-
faces. In SPIN Workshop on Model Checking of Software, pages 103–122, 2001.

[BR02] T. Ball and S.K. Rajamani. Generating abstract explanations of spurious counterex-
amples in C programs analysis. Technical Report 2002-09, Microsoft Research, Jan-
uary 2002.

[CCG+02] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Se-
bastiani, and A. Tacchella. NuSMV 2: An OpenSource tool for symbolic model
checking. In Computer Aided Verification, pages 359–364, 2002.

[CCG+03] S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification of software
components in C. In International Conference on Software Engineering, pages 385–
395, 2003.

[CCG+04] S. Chaki, E. Clarke, A. Groce, J. Ouaknine, O. Strichman, and K. Yorav. Efficient
verification of sequential and concurrent C programs. Formal Methods in System
Design, 2004. To appear.

[CGJ+00] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstrac-
tion refinement. In Computer Aided Verification, pages 154–169, 2000.

[CGL92] E. Clarke, O. Grumberg, and D.E. Long. Model checking and abstraction. In POPL,
January 1992.

[CKSY04] E. Clarke, D. Kroening, N. Sharygina, and K. Yorav. Predicate abstraction of ANSI-C
programs using SAT. Formal Methods in System Design, 2004. To appear.

[CTW03] Edmund Clarke, Muralidhar Talupur, and Dong Wang. SAT based predicate abstrac-
tion for hardware verification. In Proceedings of SAT’03, May 2003.

[DNS03] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: A theorem prover for
program checking. Technical Report HPL-2003-148, HP Labs, July 2003.

[God97] P. Godefroid. VeriSoft: a tool for the automatic analysis of concurrent reactive soft-
ware. In Computer Aided Verification, pages 172–186, 1997.

[GS97] S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In O. Grumberg,
editor, Proc. 9th INternational Conference on Computer Aided Verification (CAV’97),
volume 1254, pages 72–83. Springer Verlag, 1997.

[HJMS02] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In Principles
of Programming Languages, pages 58–70, 2002.

[JKC04] H. Jain, D. Kroening, and E.M. Clarke. Verification of SpecC using predicate abstrac-
tion. In MEMOCODE 2004. IEEE, 2004.

[KCL04] D. Kroening, E. Clarke, and F. Lerda. A tool for checking ANSI-C programs. In Tools
and Algorithms for the Construction and Analysis of Systems, pages 168–176, 2004.

[Kur95] R. P. Kurshan. Computer-Aided Verification of Coordinating Processes: The
Automata- Theoretic Approach. Princeton University Press, 1995.

[MPC+02] M. Musuvathi, D. Park, A. Chou, D. Engler, and D. Dill. CMC: a pragmatic ap-
proach to model checking real code. In Symposium on Operating System Design and
Implementation, 2002.

[PR02] T. Ball A. Podelski and S. K. Rajamani. Relative completeness of abstraction refine-
ment for software model checking. In Tools and Algorithms for the Construction and
Analysis of Systems, pages 158–172, 2002.

[RRDH04] Robby, E. Rodriguez, M. Dwyer, and J. Hatcliff. Checking strong specifications
using an extensible software model checking framework. In Tools and Algorithms for
the Construction and Analysis of Systems, pages 404–420, 2004.

[VHB+03] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model checking programs.
Automated Software Engineering, 10(2):203–232, 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

