
Verification of SpecC using Predicate Abstraction∗

Himanshu Jain Daniel Kroening Edmund Clarke

Carnegie Mellon University
{hjain,kroening,emc}@cs.cmu.edu

Abstract

Languages such as SystemC or SpecC offer a new de-
sign paradigm that addresses the industry’s need for a fast
time-to-market. However, formal verification techniques
are widely applied in the hardware design industry only for
low level designs, such as a netlist or RTL. The higher ab-
straction levels offered by these new languages are not yet
amenable to rigorous, formal verification. This paper de-
scribes how to apply predicate abstraction to SpecC system
descriptions. The technique supports the concurrency con-
structs offered by SpecC. It models the bit-vector semantics
of the language accurately, and can be used for both prop-
erty checking and for checking refinement together with a
traditional low-level design given in Verilog.

1. Introduction

Formal verification techniques are widely applied in
the hardware design industry. Introduced in 1981,Model
Checking[10, 13] is one of the most commonly used for-
mal verification technique in a commercial setting. How-
ever, it suffers from the state explosion problem. In case
of BDD-based symbolic model checking this problem man-
ifests itself in the form of unmanageably large BDDs [6].
This problem is partly addressed by a formal verification
technique calledBounded Model Checking(BMC) [5]. In
BMC, the transition relation for a complex design and its
specification are jointly unwound to obtain a Boolean for-
mula, which is then checked for satisfiability by using a SAT

∗This research was sponsored by the Gigascale Systems Research Cen-
ter (GSRC) under contract no. 9278-1-1010315, the National Science
Foundation (NSF) under grant no. CCR-9803774, the Office of Naval Re-
search (ONR), the Naval Research Laboratory (NRL) under contract no.
N00014-01-1-0796, the Army Research Office (ARO) under contract no.
DAAD19-01-1-0485, and the General Motors Collaborative Research Lab
at CMU. The views and conclusions contained in this document are those
of the author and should not be interpreted as representing the official poli-
cies, either expressed or implied, of GSRC, NSF, ONR, NRL, ARO, GM,
or the U.S. government.

procedure such as Chaff [24]. BMC has been used success-
fully to find subtle errors in very large industrial circuits.

Most model-checkers used in the hardware industry use
a very low level design, usually a netlist, but time-to-market
requirements have rushed the Electronic Design and Au-
tomation (EDA) industry towards design paradigms that of-
fer a very high level of abstraction. This high level can
shorten the design time by hiding implementation details
and by merging design layers. As part of this process, an
abundance of C-like system design languages has emerged.
They promise to allow joint modeling of both the hardware
and software component of a system using a language that
is well-known to engineers.

Several different projects have undertaken the task of ex-
tending C to support hardware specification. HardwareC
[20] from Stanford University is one of the earliest C-
like hardware description languages. While not all ANSI-
C constructs are offered, it provides arbitrary-length bit-
vector data types and an extended set of bit-vector opera-
tors. It also features inter-process communication by means
of channels. It is aimed at a rather low hardware-level, re-
sembling synthesizable RTL.

The SpecC language [1], developed at the University of
California, Irvine, is based on ANSI-C and adds constructs
for state machines, concurrency (pipelines in particular),
and arbitrary-length bit-vectors. It also provides a way to
modularize the design by a construct that resembles classes
as offered by C++. Channels are used for synchronization
and communication between modules.

Handel-C [26], developed at Oxford University, is very
similar to SpecC, including the syntax for the exten-
sions. As SpecC, it offers concurrency, arbitrary-length bit-
vectors, and channels.

The languages mentioned above are all based on ANSI-
C and share most features. On the other hand, SystemC
[29], promoted by several companies in the EDA industry,
is based on C++. Like the C-based languages, SystemC
offers extensions to allow arbitrary-length bit-vectors and
constructs for modularization and inter-process communi-
cation. As a distinguishing feature, it offers four state logic

signals as found in Verilog. It also supports low-level hard-
ware concepts such as multiple drivers for a single signal.

Some fragments of these languages are synthesizable,
and thus allow the application of netlist or RTL-based for-
mal verification tools. However, the higher abstraction lev-
els offered by most of these languages are not yet amenable
to rigorous, formal verification. This is caused by the high
degree of asynchronous concurrency used by the models,
which requires thread interleaving semantics. As languages
like SpecC are closer to concurrent software than to a tra-
ditional hardware description, we propose to address this
verification problem using techniques from software verifi-
cation.

The effectiveness of model checking for software is
severely constrained by the state space explosion problem,
and much of the research in this area is targeted at reducing
the state space of the model used for verification. One prin-
cipal method in state space reduction of software systems
is abstraction. Abstraction techniques reduce the program
state space by mapping the set of states of the actual system
to an abstract, and smaller, set of states in a way that pre-
serves the actual behaviors of the system. If the abstraction
turns out to be too coarse, it has to be refined.

The abstraction refinement process has been automated
by the Counterexample Guided Abstraction Refinement
paradigm [21, 8, 2], or CEGAR for short. One starts with
a coarse abstraction, and if it is found that an error-trace re-
ported by the model checker is not realistic, the error trace
is used to refine the abstract program, and the process pro-
ceeds until no spurious error traces can be found.

Predicate abstraction of ANSI-C programs in combi-
nation with counterexample guided abstraction refinement
was introduced by Ball and Rajamani [2] and promoted
by the success of the SLAM project [3]. The goal of this
project is to verify that Windows device drivers obey API
conventions. The abstraction of the program is computed
using a theorem prover such as Simplify [14], and thus,
SLAM models the program variables using unbounded in-
teger numbers. Overflow or bit-wise operators are not mod-
eled. As the property of interest mainly depends on the
control flow and not on the data computed, this treatment
is sufficient.

While the original work covers sequential programs
only, the idea was extended to concurrent programs in [7].
The threads are abstracted to labeled transition systems that
communicate using shared events. As in the SLAM project,
the abstraction is performed assuming unbounded integer
numbers.

However, SystemC, SpecC and Handel C all offer an ex-
tensive set of bit-wise operators, which are not supported by
this approach. At the system-level, the use of these bit-level
constructs is ubiquitous. Furthermore, the languages allow
the use of shared variables for communication between pro-

cesses. This is not supported efficiently by the approach
presented in [7].

An algorithm that preserves the bit-vector semantics dur-
ing predicate abstraction is presented in [12]: A SAT solver
is used to compute an abstraction of an ANSI-C program.
The approach support all ANSI-C integer operators, includ-
ing the bit-wise operators. The technique is described for
sequential programs only, while languages like SpecC en-
courage the use of concurrency.

Contribution This paper describes how to use SAT-based
predicate abstraction as introduced in [12] to verify a con-
current SpecC system description. Each thread of control
is abstracted separately. The abstractions preserve the bit-
vector semantics of SpecC, and all SpecC bit-vector oper-
ators are supported. Optionally, a low-level design (circuit
level) may be added, which is also abstracted using SAT-
based predicate abstraction. The abstractions of the individ-
ual threads and the optional low-level design are then com-
posed and checked using conventional BDD-based sym-
bolic model checking. The paper also describes the sim-
ulation and abstraction refinement process.

The low-level design may be used for two purposes:

1. The low-level design can be used to check refinement,
i.e., that both the low-level and the high-level design
implement the same behavior.

2. The low-level design can be used as an addition to the
high-level design. The algorithm can then check safety
properties on this combination. The low-level design
can represent the hardware, while the high-level design
represents the software component of a system.

Related Work To the best of our knowledge, this work
is the first to apply predicate abstraction to SpecC or any
similar system-level language.

There are tools that take a C program in a specific form
as input and translate it into a circuit. The circuit can then
be used for property checking or can be compared to other
circuits using standard equivalence checkers, as done by
Séméria et al. [30]. However, the C program has to be very
similar to the circuit, e.g., they must share the same regis-
ters and must perform the computations in the same number
of steps. Thus, it cannot be a high-level model such as we
examine.

Matsumoto, Saito, and Fujita compare two SpecC hard-
ware descriptions [23]. First, the differences are identified
syntactically, and then compared using symbolic simula-
tion. The method also assumes very strong similarity of
the two descriptions. No abstraction is performed.

In [18], Bounded Model Checking (BMC) [5, 4] is ap-
plied to both a circuit and an ANSI-C program. The ap-
proach is restricted to sequential ANSI-C programs, no sup-

port for concurrency is provided. Furthermore, no attempt
is made to abstract the program or the circuit, which limits
the capacity of the method. Also, Bounded Model Check-
ing only shows the absence of inconsistencies up to a given
bound. In order to guarantee the absence of any inconsis-
tencies, the bound has to be larger than the Completeness
Threshold [19], which is too large for many industrial de-
signs.

The concept of verifying the equivalence of a software
implementation and a synchronous transition system was
introduced by Pnueli, Siegel, and Shtrichman [27]. Since
the target code is generated automatically by a compiler,
the C program is assumed to have a specific form.

Clarke et al. [11] use SAT-based predicate abstraction for
the verification of control intensive systems arising from the
hardware domain. They propose a lazy abstraction refine-
ment algorithm to identify the predicates relevant to the ver-
ification of the given property. In contrast to our work, very
low level designs in the form of netlists are verified.

In [17], an algorithm for model checking safety proper-
ties of concurrent software was applied for automatic race
detection in multithreaded C programs. However, their
analysis does not cover hardware-like bit-vector manipula-
tion. Qadeer et al. [28] present an algorithm for computing
summaries of procedures for multi-threaded programs. The
summary of a procedureP represents the effect ofP on a
particular input state. IfP is called from two different places
but with the same input state, the work done in analyzing the
first call is reused for the second. They also present a model
checking algorithm that uses the summaries. However, no
experimental evaluation was given in the paper.

Outline In section 2, we provide a background on SpecC,
and describe how we prepare the SpecC program for verifi-
cation. Section 3 formalizes the semantics of the synchro-
nization constructs. We describe the abstraction and refine-
ment process in section 4, and provide experimental data in
section 5.

2. SpecC

2.1 Introduction

The SpecC language [15] is a modeling language for
the specification and design of digital embedded systems at
the system level. System-level design is a methodology for
specification and design of systems that include both hard-
ware and software components. The process of system de-
sign begins with a high-level specification which specifies
the functionality as well as the performance, power, cost
and other constraints of the intended design.

The SpecC language is an extension of the C program-
ming language and is based on the ANSI-C standard. As

a true superset, SpecC covers the complete set of ANSI-
C constructs. In addition, SpecC supports concepts essen-
tial for the design of embedded systems, including struc-
tural hierarchy, concurrency, communication, synchroniza-
tion, state transitions, exception handling, and timing.

Syntactically, a SpecC program consists of a set of
behavior , channel , andinterface declarations. A
behavior is similar to a C++ class with a set of ports, a set of
instantiations of child behaviors, and a set of variables and
functions. A behavior can be connected to other behaviors
or channels through its ports. A channel is a class that en-
capsulates communication and provides a method for pro-
cess synchronization. An interface provides a flexible link
between behaviors and channels.

SpecC extends the ANSI-C syntax with several con-
structs for concurrent programming with asynchronous in-
terleaving semantincs. Since the focus of this paper is mak-
ing the concurrent SpecC programs amenable to verifica-
tion, we describe the informal meaning of these constructs
next:

• The par construct specifies concurrent execution. It
is used to split the current thread by starting the con-
current execution of the various child threads. The ex-
ecution of thepar construct completes when all the
child-threads have terminated.

• Thewait construct suspends the execution of the cur-
rent thread until a given event occurs. If more than one
event is specified, thewait construct follows either
OR or AND semantics. The OR semantics mean that
the wait construct suspends the execution of the cur-
rent thread until at least one of the events occurs. The
AND semantics mean that the wait construct suspends
the execution of the current thread until all the given
events have occured. A particular ordering is not re-
quired.

• Thenotify construct generates the events specified
as arguments. The execution of all threads, which are
currently waiting on these events, is resumed.

• The functions defined for a channel class have an im-
plicit locking mechanism. Only one thread is allowed
to execute the channel code of a particular instance
of the channel. The lock is released while the chan-
nel waits for events. We model this implicit synchro-
nization construct using explicit lock and unlock com-
mands.

An event has a special type called theevent type. Note
that an event does not have a value and can be used only
with certain constructs such aswait andnotify .

Example 1: The SpecC program of Fig. 1 shows the use
of thewait andnotify constructs described above. The

event e;
int x;

behavior A () {
void main() {

x = 42;
notify e;

}
};

behavior B () {
void main() {

wait(e);
printf("Got %d", x);

}
};

behavior Main {
A a();
B b();
int main () {

par { a.main();
b.main(); }

return 0;
}

};

Figure 1. A simple SpecC programP.

example consists of a Main behavior, behavior A, and a be-
havior B. The Main behavior uses thepar construct to start
concurrent execution of themain functions of behaviorsA
andB, whereA sends data toB via the global variablex. In
order to ensure thatB reads the value ofx only whenA has
produced it,B waits for the evente to be generated byA.

In the example above, the use of the synchronization
constructswait andnotify ensures that for any possi-
ble interleaving of the statements in threadA and threadB,
the data will transfer correctly fromA to B. That is, even if
A were to generate the evente before B starts waiting fore,
B will eventually get the event sent byA and will read the
data correctly.

Informally, the synchronization semantics described in
the SpecC standard require that the events generated are
collected until no active thread is available for execution.
Once all the threads are either suspended due to await
statement or terminated, the set of generated events is de-
livered to the waiting threads, activating those threads that
were waiting on any of them. This is why in the example
aboveB is guaranteed to receive the event send byA.

main
A

B

B

C

(A) (B)

main
A

B

B

C

(1)

(3)

(5)

(4)

(2)

Figure 2. (A) Nestedpar structure (B) DFS numbering
starting frommain .

2.2 Pre-Processing

In this section we describe the steps used to simplify the
given SpecC program. We assume that the given SpecC pro-
gram does not use recursion and hence there is no dynamic
thread creation either.

First, we flatten the class-like constructs offered by
SpecC, i.e., the behaviors and channels. While flattening
the channels, we make the implicit locks explicit by adding
lock andunlock statements.

This is followed by the removal of side effects, that is,
pre- and post-increment operators, the assignment opera-
tors, and the function calls. This is done by introducing
temporary variables and inlining of function calls. We then
replace thebreak , continue , if , for , while , anddo
while statements by equivalent guardedgoto commands.
After these steps, the program contains only guardedgoto ,
assignment,wait , notify , lock , unlock , and par
statements.

The next step is to statically create the threads that can
be active during the execution of the given program. This
is done by iterating over thepar statements in the given
program. For example, let themain thread contain a
par statement which starts the concurrent execution of the
threads of typeA and B. Let A contain apar statement
which starts two threads of typeB andC. We assume thatB
andC do not contain any morepar statements. The result-
ing par graphis shown in Fig. 2(A).

The par graph shows that there are two threads of type
B which can be concurrent at the same time. For the static
creation of the threads we need to distinguish between these
two instances ofB. This is done by performing depth first
search (DFS) and assigning a distinct number calledthread-
numberto each node in the par graph. The result is shown
in Fig. 2(B). After assigning the thread numbers, we cre-
ate five static threads, which aremain , A, B3, B5, andC.
The threadsB3 and B5 are the two instances of threadB
indexed according to their thread-numbers. We do not in-
dex the threadsmain , A, andC, because there is only one
instance of these threads in Fig. 2(B).

After the creation of static threads we replace thepar

statements usingwait andnotify statements. For ex-
ample, consider themain thread of Fig. 2(B). It starts the
concurrent execution of the threadsA and B5. In order
to replace thispar statement, we introduce four global
eventsstart1, start2, done1, anddone2 into the system. The
changes made to the code of themain , A, andB5 threads
are shown in Fig. 3. Thepar statement in themain thread
is replaced by the following statements:

notify start1, start2;
wait done1 &&done2;

The statementswait start1 andwait start2 are added
to the begining ofA and B5, respectively. These state-
ments ensure that the threadsA and B5 will wait for the
main thread to start them by generating the eventsstart1
andstart2, respectively. Similarly, the statementsnotify
done1 andnotify done2 are added to the end ofA andB5,
respectively. These events signal themain thread that the
threadsA andB5 have completed their execution. This in
turn enables themain thread to resume its execution.

S1: notify start1, start2;

S2: wait done1 && done2;

notify done1;
goto L1;

wait start1;L1: wait start2;

notify done2;
goto M1;

M1:

5B

B3

main

A

C

Figure 3. Replacement ofpar in themain thread.

Thegoto statements at the end of the threadsA andB5

in Fig. 3 causeA andB5 to start waiting again for the events
start1 andstart2, respectively. This is required if thepar
statement of themain thread was inside a loop. The guards
of thegoto statements in Fig. 3 are assumed to be true.

The program obtained after applying the simplifications
described above consists of a set of static threads. Each
thread consists of only guardedgoto , assignment, and the
four synchronization statements.

3. Formal Semantics

The SpecC execution semantics have been described by
Dömer et al. [15] using the time interval formalism. Mueller
et al. [25] formalized the execution semantics of SpecC us-
ing distributed Abstract State Machines. In this section,
we describe the semantics of a given SpecC programP by

defining a transition systemT for P. The transition sys-
temT = (S, I ,R) consists of a set of statesS, a set of initial
statesI ⊆ S, and a transition relationR(s,s′), which relates
the current states∈ S to a next-states′ ∈ S.

We assume that the given programP has already been
pre-processed as described in section 2.2. Let{P1, . . . ,Pm}
be the set of the static threads present inP. A states of the
programP consists of the valuations for:

• the set of program counters{pc1, . . . , pcm}, where
eachpci is the program counter of the threadPi . The
projection functionpci(s) maps a states to the value
of the program counterpci in states.

• the set of program variables, denoted byV. The func-
tion v(s) maps a states to the value of the variablev in
states.

• the set ofevent bits E, defined as∪m
i=1 ∪e{ei}, where

edenotes an event in the program. Intuitively, an event
bit ei is the flag used by the threadPi to check the oc-
curence of evente. The functionei(s) mapss to the
value of the event bitei in states.

Henceforth, we assume thati, j range over the thread in-
dexes, that isi, j ∈ {1, . . . ,m}.

Initially, the program counter for each thread is set to one
and all event bitsei are set to false. Thus, the set of initial
statesI is defined as follows:

I := {s∈ S|(∀i. pci(s) = 1)∧ (∀ei ∈ E. ¬ei(s))}

The transition relationR(s,s′) relates two statess ands′,
wheres′ is obtained by choosing one of the threadsPi non-
deterministically and executing it in the states. If the thread
Pi is executed in the transition froms to s′, then the program
counters of all the other threadsj 6= i remain the same. We
useδ(s,s′, i) to denote effect of executing the threadPi in
states. Formally,

R(s,s′) := ∃i (∀ j 6= i → pcj(s) = pcj(s′))∧δ(s,s′, i)

We useeqvars(s,s′) to denote that the values of all vari-
ables do not change in the transition froms to s′.

eqvars(s,s′) := ∀v∈V. v(s) = v(s′)

We useeqevents(s,s′) to denote that the values of all the
event bits do not change in the transition froms to s′.

eqevents(s,s′) := ∀ei ∈ E. ei(s) = ei(s′)

We assume that in each transition exactly one thread exe-
cutes one statement atomically. This assumption is justified
later in this section. LetΓ(s, i) denote the statement exe-
cuted in the states by Pi . The functionδ(s,s′, i) is defined

by a case split on the statementΓ(s, i). We have the follow-
ing cases:

If Γ(s, i) is a guardedgoto statement of the form
(goto,g, l), then the value of the program counterpci is
changed according to the value of the boolean conditiong in
the states, which is denoted byg(s). If g(s) is true, then the
program counter is set tol , otherwise the program counter
is simply incremented. The values of the variables and the
values of the event bits remain unchanged.

δ(s,s′, i) :=
{

pci(s′) = l : g(s)
pci(s′) = pci(s)+1 : otherwise

∧ eqvars(s,s′) ∧ eqevents(s,s′)

If Γ(s, i) is an assignment statement of the form
(v:=exp), then the value ofv is set to the value of the
expressionexp in the states, which is denoted byexp(s).
The values of the other variables and the values of the event
bits in E remain unchanged. The program counter forPi is
incremented.

δ(s,s′, i) := (v(s′) = exp(s))∧
(∀u∈V\{v} : u(s) = u(s′))∧
(pci(s′) = pci(s)+1)∧eqevents(s,s′)

If Γ(s, i) is a wait statement of the form (wait ,AND,W),
whereW is a set of events, then the threadPi waits until all
the events inW have been generated (AND semantics). In
order to test if an evente has been generated, the threadPi

checks the event bitei . If all the event bitsei with e∈W are
true, all the events inW have been generated. In this case,
the program counter forPi is incremented and the event bits
ei with e∈ W are reset to false. The values of the other
event bits remain the same. We denote the set of other event
bits byE′ with E′ = E\{ei |e∈W}. If not all the events in
W have been generated yet, then the program counter forPi

remains unchanged. The values of all the event bits remain
unchanged. In both the cases, the values of all the variables
remain unchanged.∧

e∈W

ei(s) → δ(s,s′, i) := eqvars(s,s′)∧

(pci(s′) = pci(s)+1)∧∧
e∈W

¬ei(s′) ∧

(∀ f j ∈ E′ : f j(s) = f j(s′))

¬
∧

e∈W

ei(s) → δ(s,s′, i) := (pci(s′) = pci(s))∧

eqvars(s,s′)∧eqevents(s,s′)

The treatement of thewait statement with OR seman-
tics is similar.

If Γ(s, i) is a notify statement of the form (notify ,W),
whereW is a set of events, then for every evente∈W, we

set the event bitsej for all j (1≤ j ≤ m) to true. This en-
sures that any threadPj that was previously waiting for an
evente∈W will now find the corresponding event bitej to
be true. This also allowsnotify e to match withwait e
even ifwait eoccurs later.

δ(s,s′, i) := (∀e∈W ∀ j : ej(s′))∧
(∀e /∈W ∀ j : ej(s) = ej(s′))∧
(pci(s′) = pci(s)+1)∧eqvars(s,s′)

Our definition of the transition relation assumes that in
each transition exactly one thread executes one statement
atomically. However, the SpecC standard does not guaran-
tee atomicity for the execution of any portion of the concur-
rent code. The SpecC standard requires that for concurrent
threads to be cooperative, the threads need to be synchro-
nized at the point of communication.

If the given program is not synchronized properly, the
following situation might arise: threadP1, executing the as-
signment statementx := y, is preempted by another thread
P2, which starts writing toy. As a result of this,x might
get a value with bits from both the old and the new value
of the variabley. This situation is commonly referred to as
theread write(RW) conflict between two concurrently exe-
cuting threads. A situation similar to this is thewrite write
(WW) conflict which arises when two threads attempt to write
to a shared variable simultaneously.

Both RWandWWconflicts are undesirable, as they make
the program unsafe. Therefore, before taking a transition
out of a states, we first check for a potentialRWor WWcon-
flict in the states. In order to do this, we compute for each
threadPi the set of variables it can read and write in the state
s. We denote these sets byread(i,s) andwrite(i,s), respec-
tively. The presence of aRWor WWconflict can be cast as
the following safety property:

∃i∃ j : (i 6= j) ∧ ((read(s, i)∩write(s, j) 6= /0)∨
(write(s, i)∩write(s, j) 6= /0))

We call a states in which aRWor WWconflict is possible
during the execution of the next statement of two threads a
conflict state. If there is a conflict states, we report that as
an error and stop the verification process. However, if there
is noRWor WWconflict ins, then we can safely make a tran-
sition out of states using the transition relation described
above. This is justified by the Claim 1.

Claim 1 Assuming that the execution is free ofRWandWW
conflicts, any state s reachable by executing k statements us-
ing full interleaving semantics (that is, no atomicity) is also
reachable by k transitions using interleavings only between
statements (that is, atomic execution of the statements).

This claim is shown by induction onk.

Claim 2 If there is a conflict state s reachable using full
interleaving semantics, it is also reachable using interleav-
ings only between statements.

This claim is also shown inductively. It allows us to con-
clude that it is sufficient to check for possibleRWor WWcon-
flicts before the execution of a statement. It is not necessary
to consider any interleavings within the statement.

4. Computing the Abstraction

4.1. Predicate Abstraction

We verify the SpecC program using counterexample
guided abstraction refinement (CEGAR). We perform a
predicate abstraction [16], i.e., the variables of the program
are replaced by Boolean variables that correspond to a pred-
icate on the original variables.

The first step is to obtain an initial abstraction. This ab-
straction is then checked using a symbolic model checker.
We perform a safe abstraction, i.e., if the property holds on
the abstract model, we can conclude that it also holds on the
concrete model. If the property does not hold on the abstract
model, we expect the model checker to provide a coun-
terexample. This abstract counterexample is then simulated
on the concrete model. This step corresponds to Bounded
Model Checking on the concrete model with additional con-
straints that are derived from the abstract counterexample.

If the simulation is successful, we obtain a concrete
counterexample from the Bounded Model Checker, which
can be given to the user to aid in finding the cause of the
flaw. If the simulation fails, the abstract counterexample is
spurious, and the abstraction has to be refined.

Formally, we assume that the algorithm maintains a set
of n predicatesp1, . . . , pn. These predicates are global, i.e.,
the abstract model only contains one set which is used by
all the threads. The predicates are functions that map a con-
crete statex ∈ S into a Boolean value. When applying all
predicates to a specific concrete state, one obtains a vector
of n Boolean values, which represents an abstract state ˆx.
We denote this function byα(x). It maps a concrete state
into an abstract state and is therefore called anabstraction
function.

We perform an existential abstraction [9], i.e., the ab-
stract model can make a transition from an abstract state ˆx
to x̂′ iff there is a transition fromx tox′ in the concrete model
andx is abstracted to ˆx andx′ is abstracted to ˆx′. We call the
abstract product machinêT, and we denote the transition
relation ofT̂ by R̂.

R̂ := {(x̂, x̂′) |∃x,x′ ∈ S: R(x,x′)∧
α(x) = x̂∧α(x′) = x̂′}

Note that in practice, additional transitions are often
added to the abstract transition relation in order to make the

computation ofR̂easier. This is common for the abstraction
of both circuits and programs.

The abstraction of a safety propertyP(x) is defined as
follows: for the property to hold on an abstract state ˆx, the
property must hold on all statesx that are abstracted to ˆx.

P̂(x̂) :⇐⇒ ∀x∈ S: (α(x) = x̂) =⇒ P(x)

The same abstraction is also used for the initial state
predicate. Thus, ifP holds on all reachable states of the
abstract model,P also holds on all reachable states of the
concrete model.

4.2. SAT-based Abstraction

Most tools using predicate abstraction for software veri-
fication use general-purpose theorem provers such as Sim-
plify [14] to compute the abstraction. This approach suf-
fers from the fact that errors caused by bit-vector over-
flow may remain undetected. Furthermore, bit-wise oper-
ators are usually treated by means of uninterpreted func-
tions. Thus, properties that rely on these bit-vector opera-
tors cannot be verified. However, we expect that system-
level SpecC models typically use an abundance of bit-wise
operators, and that the property of interest will depend on
these operations.

In [12], the authors propose to use a SAT solver to com-
pute the abstraction of a sequential ANSI-C program. This
approach supports all ANSI-C integer operators, including
the bit-wise operators. It is used to abstract the assignment
statements and the guards of the guarded goto statements.
No abstraction is done for thewait and notify state-
ments. They are copied into the abstract model directly us-
ing the event bits (section 4.3).

Assignment Statements In order to abstract an assign-
ment statementv := exp , it is transformed into an equal-
ity v′ = exp. The primed version of a variable denotes the
value of the variable in the next state. This equality is con-
joined with equalities that define the next value of any other
variableu∈V\{v} to be the current value. Thus, only the
value of the variablev in the assignment statement changes.
This equation system is denoted byT , v denotes the vector
of all variables inV.

T (v,v′) := v′ = exp∧
∧

u∈V\{v}
u′ = u

The abstract transition relationB(x̂, x̂′) relates a current
state ˆx (before the execution of the assignment) to a next
state ˆx′ (after the execution of the assignment). It is defined
usingα as follows:

{(x̂, x̂′) |∃v,v′ : (α(v) = x̂)∧T (v,v′)∧ (α(v′) = x̂′)}

We computeB using SAT-based Boolean quantification, as
described in [12]. The result is DNF over the predicates.

Branching Conditions The expressions used in the
branching conditions of the program are ideal candidates for
predicates, and thus, the branching condition will often be a
Boolean combination of predicates. If this is so, the branch-
ing conditions are simply replaced by their corresponding
Boolean variables. If not, the expression is abstracted using
SAT in analogy to an assignment statement.

4.3. Checking the Abstract Model

The abstraction process above results in one Boolean
program for each thread. The programs share the predi-
cates, but each thread has individual state bits to store the
events. No attempt is made to abstract the event structure.
We rely on the model checker to explore the possible in-
terleavings of the individual threads. In order to check the
abstract model, we use SMV.

The wait and thenotify statements present in the
static threads are directly translated to the SMV statements
using the semantics described in section 3. For example,
consider a program with only two threadsP1 andP2. Let P1
contain await e statement and letP2 contain anotify e
statement. In order to translate these statements to SMV,
two event bitse1 ande2 are introduced into the SMV model.
Let l1 and l2 denote the program counter values at the
wait e statement inP1 and thenotify e statement inP2,
respectively. The SMV statements generated forwait e
statement inP1 are as follows:

ASSIGN next(pc1) :=
case pc1=l1: // wait statement

case e1 : l1 +1; // eventehas occured
!e1 : l1; // eventehas not yet occured

esac
esac

TRANSpc1 = l1∧e1 → !next (e1) // resettinge1

The SMV statement generated for thenotify e
statement inP2, is as follows:

TRANSpc2 = l2 → next (e1)∧next (e2)

As described in section 3, it is not necessary to consider
all possible interleavings if one checks for possible conflicts
before the execution of the statements. We merge multiple
assignment statements into one basic block and abstract this
block into one abstract transition, and thus, we eliminate the
interleavings within a basic block. This requires that any
conflict between any pair of statements in the basic blocks
that are about to be executed has to be detected. The set of
variables read and written until the end of the basic block
can easily be computed statically. We use these sets to de-
tect a potentialRWor WWconflict among the threads that are
ready to be executed by means of an SMVSPECstatement.

4.4. Simulation and Refinement

If the property does not hold on the abstract model, SMV
returns a counterexample trace. This trace is then checked
on the concrete model.

Let the counterexample trace havek steps. Each step
is performed by a particular thread, and corresponds to a
particular statement in the concrete program. We use the
thread schedule (interleaving) of the abstract trace as given
by SMV for the simulation. No attempt is made to find
alternate thread schedules.

The simulation requires a total ofk SAT instances. Each
instance adds constraints for one more step of the coun-
terexample trace. We denote the value of the (concrete)
variablev ∈ V after stepi by vi . All the variablesv ∈ V
inside an arbitrary expressione are renamed tovi using the
functionρi(e).

The SAT instance numberi is denoted byΣi and is built
inductively as follows:Σ0 (for the empty trace) is defined
to be true. Fori ≥ 1, Σi depends on the type of statement
of statei in the counterexample trace. Letpi denote the
statement executed in the stepi.

If step i is a guarded goto statement, then the (concrete)
guardg of the goto statement is renamed and used as con-
junct. Furthermore, a conjunct is added that constraints the
values of the variables to be equal to the previous values:

pi = (goto ,g, l) −→ Σi := Σi−1∧ρi(g)∧∧
u∈V

ui = ui−1

If step i is an assignment statement, the equality for the
assignment statement is renamed and used as conjunct:

pi = (v:=exp) −→ Σi := Σi−1∧
ρi(v) = ρi−1(exp)∧∧
u∈V\{v}

ui = ui−1

If step i is a notify or wait statement, the variables
are not changed.

pi = (notify ,W) −→ Σi := Σi−1∧∧
u∈V

ui = ui−1

The formal definition ofΣi for wait statements is done
analogously.

Note that in case of assignment,wait , and notify
statements,Σi is satisfiable if the previous instanceΣi−1 is
satisfiable. Thus, the check only has to be performed if the
last statement is a guarded goto statement. If the last in-
stanceΣk is satisfiable, the simulation is successful and a
bug is reported. The satisfying assignment provided by the

SAT solver allows us to extract the values of all variables
along the trace. If any SAT instance is unsatisfiable, the step
number and the guard that caused the failure are passed to
the refinement algorithm.

Refinement If the abstract counterexample cannot be
simulated, it is an artifact from the abstraction process and
the abstraction has to be refined. This is done by comput-
ing the weakest precondition of the guardg that caused the
last SAT-instanceΣ to be unsatisfiable. The weakest pre-
conditions are computed following the simulation trace as
built in the previous section, and thus, the computation may
include statements from multiple threads. The new predi-
cates obtained from these weakest pre-conditions are added
to the global set of predicates. This ensures that in future ab-
stractions, this particular spurious counterexample will not
occur.

5. Experimental Results

We report experimental results for synthetic benchmarks
to evaluate the scalability of the approach with respect to the
size of the program, the number of threads, and the number
of predicates required to prove or disprove the property. The
experiments are performed on a 1.5 GHz AMD machine
with 3 GB of memory running Linux.

The benchmark results are given in table 1. ThePIPE
benchmarks is a series of instances of a pipeline that sim-
ply passes data through. The number denotes the number of
pipeline stages. Each pipeline stage is modeled as a separate
thread. A separate event for each stage is used to synchro-
nize the communication of the threads. The property used
asserts that the data that was put in the pipeline matches the
data that comes out of the pipeline. The runtime includes
the time for the abstraction refinement. The table shows the
total time and the time spent in the model checker check-
ing the abstract model. On this benchmark, the run-time
is clearly dominated by the time required for checking the
abstract model. Thus, we experimented with two different
implementations, CMU SMV and NuSMV. NuSMV clearly
outperforms CMU SMV, and therefore we only report the
NuSMV time. Both model checkers show exponential run-
time in the number of threads.

The PRED nbenchmarks requiren predicates and re-
finement iterations to show the property. While the abstrac-
tion scales well with the number of predicates, the model
checker quickly becomes the bottleneck.

The ALUPIPE benchmarks use a SpecC program that
models a shallow pipeline (just two or three stages). How-
ever, they make extensive use of bit-wise operators (arith-
metic, slicing, concatenation). E.g., the program computes
the result of an addition in multiple steps. The property is
an assertion that checks the result computed by the pipeline.

These benchmarks require many predicates, and thus, the
run-time is dominated by the abstraction phase.

6. Conclusion

An abundance of formal verification tools are available
for the verification of hardware given in RTL or as a netlist.
However, there is little support for formal verification for
system level languages such as SpecC. We presented an
algorithm for rigorous, formal verification of SpecC pro-
grams. The algorithm models the bit-vector semantics of
the language accurately, and provides full support for the
concurrency and synchronization constructs offered by the
language.

The method uses counterexample guided abstraction re-
finement to obtain a safe predicate abstraction of the SpecC
program. The abstraction is done using SAT, which enables
support for all bit-vector operators. The experimental re-
sults indicate that the verification of the abstract model can
be a bottleneck if many threads are used. Future research
will investigate the use of partial order reduction on these
abstract models [22]. We are also investigating the use of
explicit state and SAT-based model checkers.

Acknowledgement

We thank Masahiro Fujita for numerous clarifications of
the semantics of SpecC.

References

[1] http://www.specc.org.
[2] T. Ball and S. Rajamani. Boolean programs: A model and

process for software analysis. Technical Report 2000-14,
Microsoft Research, February 2000.

[3] T. Ball and S. K. Rajamani. Automatically validating tem-
poral safety properties of interfaces. InThe 8th International
SPIN Workshop on Model Checking of Software, volume
2057 ofLNCS, pages 103–122. Springer, 2001.

[4] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu.
Symbolic model checking using SAT procedures instead of
BDDs. InDesign Automation Conference (DAC’99), 1999.

[5] A. Biere, A. Cimatti, E. M. Clarke, and Y. Yhu. Symbolic
model checking without BDDs. InTools and Algorithms
for Construction and Analysis of Systems, pages 193–207,
1999.

[6] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and
L. J. Hwang. Symbolic model checking: 1020 states and be-
yond. Information and Computation, 98(2):142–170, 1992.

[7] S. Chaki, E. Clarke, A. Groce, J. Ouaknine, O. Strichman,
and K. Yorav. Efficient verification of sequential and con-
current C programs. Formal Methods in System Design
(FMSD), 2004. to appear.

bug predi- RuntimeBenchmark threads
length cates Total NuSMV

PIPE 4 5 - 4 1.9 1.9
PIPE 5 6 - 5 4.4 4.3
PIPE 6 7 - 6 8.3 8.2
PIPE 7 8 - 7 13.2 13.1
PIPE 8 9 - 8 23.3 23.2
PIPE 9 10 - 9 32.6 32.5
PIPE 10 11 - 10 55.9 55.7
PIPE 11 12 - 11 75.8 75.6
PIPE 12 13 - 12 92.0 91.9
PIPE 13 14 - 13 202.3 202.1
PIPE 14 15 - 14 789.2 788.9

bug predi- RuntimeBenchmark threads
length cates Total NuSMV

PRED 8 1 - 8 0.9 0.6
PRED 16 1 - 16 6.6 4.5
PRED 32 1 - 32 60.3 46.4
PRED 64 1 - 64 831.6 723.1
ALUPIPE A 3 - 4 4.0 0.3
ALUPIPE B 3 25 1 2.8 0.3
ALUPIPE C 3 - 6 11.1 2.6

Table 1. Experimental Results. The times are given in seconds. The ”bug length” column denotes
the length of the counterexample. A dash denotes that the property holds.

[8] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and V. H.
Counterexample-guided abstraction refinement. InCAV,
pages 154–169. Springer-Verlag, 2000.

[9] E. Clarke, O. Grumberg, and D. Long. Model checking and
abstraction. InPOPL, 1992.

[10] E. Clarke, O. Grumberg, and D. Peled.Model Checking.
MIT Press, 1999.

[11] E. Clarke, O. Grumberg, M. Talupur, and D. Wang. High
level verification of control intensive systems using pred-
icate abstraction. InFirst ACM and IEEE International
Conference on Formal Methods and Models for Co-Design
(MEMOCODE03). IEEE, 2003.

[12] E. Clarke, D. Kroening, N. Sharygina, and K. Yorav. Pred-
icate abstraction of ANSI-C programs using SAT. InProc.
of the Model Checking for Dependable Software-Intensive
Systems Workshop, San-Francisco, USA, 2003.

[13] E. M. Clarke and E. A. Emerson. Synthesis of synchroniza-
tion skeletons for branching time temporal logic. InLogic
of Programs: Workshop, volume 131 ofLNCS. Springer-
Verlag, 1981.

[14] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A theorem
prover for program checking. Technical Report HPL-2003-
148, HP Labs, 2003.

[15] R. Dömer, J. Zhu, and D. D. Gajski. The SpecC language
reference manual version 2.0.

[16] S. Graf and H. Saidi. Construction of abstract state graphs
with PVS. In O. Grumberg, editor,Proc. 9th INternational
Conference on Computer Aided Verification (CAV’97), vol-
ume 1254, pages 72–83. Springer Verlag, 1997.

[17] T. A. Henzinger, R. Jhala, R. Majumdar, and S. Qadeer.
Thread-modular abstraction refinement. InProceedings of
the 15th International Conference on Computer-Aided Veri-
fication (CAV), pages 262–274. Lecture Notes in Computer
Science 2725, Springer-Verlag, 2003.

[18] D. Kroening, E. Clarke, and K. Yorav. Behavioral con-
sistency of C and Verilog programs using bounded model
checking. InProceedings of DAC 2003, pages 368–371.
ACM Press, 2003.

[19] D. Kroening and O. Strichman. Efficient computation of
recurrence diameters. In L. Zuck, P. Attie, A. Cortesi, and

S. Mukhopadhyay, editors,4th International Conference on
Verification, Model Checking, and Abstract Interpretation,
volume 2575 ofLecture Notes in Computer Science, pages
298–309. Springer Verlag, January 2003.

[20] D. Ku and G. DeMicheli. HardwareC – a language for hard-
ware design (version 2.0). Technical Report CSL-TR-90-
419, Stanford University, 1990.

[21] R. Kurshan. Computer-aided verification of coordinating
processes: the automata-theoretic approach. Princeton Uni-
versity Press, 1994.

[22] F. Lerda, N. Sinha, and M. Theobald. Symbolic model
checking of software. In B. Cook, S. Stoller, and W. Visser,
editors,Electronic Notes in Theoretical Computer Science,
volume 89. Elsevier, 2003.

[23] T. Matsumoto, H. Saito, and M. Fujita. Equivalence check-
ing of c-based hardware descriptions by using symbolic sim-
ulation and program slicer. InInternational Workshop on
Logic and Synthesis (IWLS’03), 2003.

[24] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang,
and S. Malik. Chaff: Engineering an efficient SAT solver.
In Proceedings of the 38th Design Automation Conference
(DAC’01), pages 530–535, June 2001.

[25] W. Mueller, R. Dmer, and A. Gerstlauer. The formal execu-
tion semantics of SpecC. InProc. of International Sympo-
sium on System Synthesis, 2002.

[26] I. Page. Constructing Hardware-Software Systems from
a Single Description.Journal of VLSI Signal Processing,
12(1):87–107, 1996.

[27] A. Pnueli, M. Siegel, and O. Shtrichman. The code valida-
tion tool (CVT)- automatic verification of a compilation pro-
cess.Int. Journal of Software Tools for Technology Transfer
(STTT), 2(2):192–201, 1998.

[28] S. Qadeer, S. K. Rajamani, and J. Rehof. Summarizing pro-
cedures in concurrent programs. In31st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages (POPL), pages 245–255, 2004.

[29] http://www.systemc.org.
[30] L. Séméria, A. Seawright, R. Mehra, D. Ng, A. Ekanayake,

and B. Pangrle. RTL C-based methodology for designing
and verifying a multi-threaded processor. InProc. of the
39th DAC, pages 123–128. ACM Press, 2002.

