
Assisted Coverage Closure?

Adam Nellis1, Pascal Kesseli2, Philippa Ryan Conmy1, Daniel Kroening2,
Peter Schrammel2,4, Michael Tautschnig3

1 Rapita Systems Ltd, UK
2 University of Oxford, UK

3 Queen Mary University of London, UK
4 University of Sussex, UK

Abstract. Malfunction of safety-critical systems may cause damage to
people and the environment. Software within those systems is rigorously
designed and verified according to domain specific guidance, such as
ISO26262 for automotive safety. This paper describes academic and in-
dustrial co-operation in tool development to support one of the most
stringent of the requirements — achieving full code coverage in require-
ments-driven testing. We present a verification workflow supported by
a tool that integrates the coverage measurement tool RapiCover with
the test-vector generator FShell. The tool assists closing the coverage
gap by providing the engineer with test vectors that help in debugging
coverage-related code quality issues and creating new test cases, as well
as justifying the presence of unreachable parts of the code in order to fi-
nally achieve full effective coverage according to the required criteria. We
illustrate the tool’s practical utility on automotive industry benchmarks.
It generates 8× more MC/DC coverage than random search.

1 Introduction

Software within safety-critical systems must undergo strict design and verifica-
tion procedures prior to their deployment. The ISO26262 standard [1] describes
the safety life cycle for electrical, electronic and software components in the
automotive domain. Different activities are required at different stages of the
life cycle, helping ensure that system safety requirements are met by the imple-
mented design. The rigor to which these are carried out depends on the severity
of consequences of failure of the various components. Components with auto-
motive safety integrity level (ASIL) D have the most stringent requirements,
and ASIL A the least strict. One of the key required activities for software is to
demonstrate the extent to which testing has exercised source code, also known
as code coverage. This can be a challenging and expensive task [4], with much
manual input required to achieve adequate coverage results.

This paper presents work undertaken within the Verification and Testing
to Support Functional Safety Standards (VeTeSS) project, which develops new
tools and processes to meet ISO26262. The paper contains three contributions:

? The research leading to these results has received funding from the ARTEMIS Joint
Undertaking under grant agreement number 295311 “VeTeSS”.

http://vetess.eu/

Type Description ASIL

Function Each function in the code is exercised at least once A, B (R); C, D (HR)
Statement Each statement in the code is exercised at least once A, B (HR); C, D (R)
Branch Each branch in the code has been exercised for every

outcome at least once.
A (R); B, C, D (HR)

MC/DC Each possible condition must be shown to indepen-
dently affect a decision’s outcome.

A, B, C (R); D (HR)

Table 1. ISO26262 Coverage Requirements (HR = highly recommended, R = recommended)

1. We integrated the FShell tool [7] with an industrial code coverage tool
(RapiCover) in order to generate extra test cases and increase code cov-
erage results. This work represents an effort in the integration of formal-
methods based tools with industrial testing software. In the safety-critical
domain these two areas are generally separated from one another, with for-
mal methodology used only for small and critical sections of software to
prove correctness and viewed as an expensive procedure. The tool is at an
evaluation stage of development, assessing future improvements to prepare
its commercialisation.

2. We present a discussion as to how this technology is most appropriately used
within the safety life cycle. Achieving 100% code coverage can be a complex
and difficult task, so tools to assist the process are desirable, however there
is a need to ensure that any additional automatically generated tests still
address system safety requirements.

3. Finally, we apply the technology to three sizeable automotive benchmarks
to demonstrate the utility and the limitations in practice.
Safety standards require different depths of coverage depending on the ASIL

of the software. The requirements of ISO26262 are summarized in Tab. 1. The
aim of requirements-based software testing is to ensure the different types of
coverage are achieved to 100% for each of the categories required. In practice
this can be extremely difficult, e.g. defensive coding can be hard to provide test
vectors for. Another example is code that may be deactivated in particular modes
of operation. Sometimes there is not an obvious cause for lack of coverage after
manual review. In this situation, generating test vectors automatically can be
beneficial to the user providing faster turnaround and improved coverage results.

This paper is laid out as follows. In Sec. 2 we provide background to the
coverage problem being tackled, and criteria for success. In Sec. 3 we describe
the specific tool integration. Sec. 4 describes an industrial automotive case study.
Sec. 5 looks at both previous work and some of the lessons learnt from the
implementation experience

2 Assisted Coverage Closure

Testing has to satisfy two objectives: it has to be effective, and it has to be
cost-effective. Testing is effective if it can distinguish a correct product from one
that is incorrect. Testing is cost-effective if it can achieve all it needs to do at

the lowest cost (which usually means the fewest tests, least amount of effort and
shortest amount of time).

Safety standards like ISO26262 and DO-178B/C demand requirements-driven
testing to increase confidence in correct behavior of the software implemented.
Correct behavior means that the software implements the behavior specified in
the requirements and that it does not implement any unspecified behaviors. As
a quality metrics they demand the measurement of coverage according to cer-
tain criteria as listed in Tab. 1, for instance. The rationale behind using code
coverage as a quality metrics for assessing the achieved requirements coverage
of a test suite is the following: Suppose we have a test suite that presumably
covers each case in the requirements specification, then, obviously, missing or
erroneously implemented features may be observed by failing test cases, whereas
the lack of coverage, e.g. according to the MC/DC criterion, indicates that there
is behavior in the software which is not exercised by a test case. This may hint
at the following software and test quality problems:

(A) Some cases in the requirements specification have been forgotten. These
requirements have to be covered by additional test cases.

(B) Features have been implemented that are not needed. Unspecified features
are not allowed in safety-critical software and have to be removed.

(C) The requirements specification is too vague or ambiguous to describe a
feature completely. The specification must be disambiguated and refined.

(D) Parts of the code are unreachable. The reasons may be:
(1) A programming error that has to be fixed.
(2) Code generated from high-level models often contains unreachable code

if the code generator is unable to eliminate infeasible conditionals.
(3) It may actually be intended in case of defensive programming and error

handling.
In the latter case, fault injection testing is required to exercise these fea-
tures [8]. Dependent on the policy regarding unreachable code, case (2) can
be handled through justification of non-coverability, tuning the model or
the code generator, or post-processing of generated code.

The difficulty for the software developer consists in distinguishing above cases.
This is an extremely time consuming and, hence, expensive task that calls for
tool assistance.

2.1 Coverage Closure Problem

Given

– an implementation under test (e.g. C code generated from a Simulink model),
– an initial test suite (crafted manually or generated by some other test suite

generation techniques), and
– a coverage criterion (e.g. MC/DC),

we aim at increasing effective test coverage by automatically

– generating test vectors that help the developer debug the software in order
to distinguish above reasons (A)–(D) for missing coverage;

Initial test suite Test suite New test cases New test vectors

Infeasible test goals

Coverage measurement Program Test-vector generation

Full coverage Non-covered test goals

Fig. 1. The Coverage Closure Process

– in particular, suggesting additional test vectors that help the developer create
test cases to complete requirements coverage in case (A);

– proving infeasibility of non-covered code, thus giving evidence for arguing
non-coverability.

Note that safety standards like to DO-178C [11] allow only requirements-
driven test-case generation and explicitly forbid to achieve full structural code
coverage by blindly applying automated test-vector generation. This can easily
lead to confusion if the distinction between test-case generation and test-vector
generation is not clearly made. Test-vector generation can be applied blindly
to achieve full coverage, but it is without use by itself. A test vector is only
a part of a test case because it lacks the element that provides information
about the correctness of the software, i.e. the expected test result. Only the
requirements can tell the test engineer what the expected test result has to be.
Test-case generation is thus always based on the requirements (or a formalized
model thereof if available). Our objective is to provide assistance for test-case
generation to bridge the coverage gap.

2.2 Coverage Measurement

Combining a test-case generator with a coverage tool provides immediate ac-
cess to test vectors needed to obtain the level of coverage required for your
qualification level. Coverage tools determine which parts of the code have been
executed by using instrumentation. Instrumentation points are automatically
inserted at specific points in the code. If an instrumentation point is executed,
this is recorded in its execution data. After test completion, the coverage tool
analyzes the execution data to determine which parts of the source code have
been executed. The tool then computes the level of coverage achieved by the
tests. We use the coverage tool RapiCover, which is part of the RVS tool suite
developed by Rapita Systems Ltd.

2.3 Test Vector Generation by Bounded Model Checking

We use the test vector generator, FShell [7] (see Sec. 3.2 for details), which is
based on the Software Bounded Model Checker for C programs, CBMC [3].

Viewing a program as a transition system with initial states described by the
propositional formula Init , and the transition relation Trans, Bounded Model
Checking (BMC) [2] can be used to check the existence of a path π of length k
from Init to another set of states described by the formula ψ. This check is

performed by deciding satisfiability of the following formula using a SAT or
SMT solver:

Init(s0) ∧
∧

0≤j<k

Trans(sj , ij , sj+1) ∧ ψ(sk) (1)

If the solver returns the answer “satisfiable”, it also provides a satisfying assign-
ment to the variables (s0, i0, s1, i1, . . . , sk−1, ik−1, sk). The satisfying assignment
represents one possible path π = 〈s0, s1, . . . , sk〉 from Init to ψ and identifies the
corresponding input sequence 〈i0, . . . , ik−1〉.

Besides being useful for refuting safety properties (where ψ defines the error
states), BMC can be used for generating test vectors (where ψ defines the test
goal to be covered).

The analysis performed by CBMC is bit-exact w.r.t. the machine semantics
of the execution target and CBMC provides full bit-exact support for floating
point arithmetic. Architecture-specific settings can be configured via command
line in FShell and RapiCover supports on-target coverage measurement. We are
hence guaranteed that the generated test vectors are going to cover the test
goals. In addition, using BMC in a test-vector generator permits generating the
shortest test vectors possible to cover a certain test goal or even a whole group
of test goals, which helps keeping test suites concise and test execution fast [12].

An advantage of using a model checker is also its ability to find test vectors
for corner cases (“Under which conditions can this floating point variable take
the value NaN?”). Moreover, in our experience, due to the high precision of
the analysis, it is even very likely to discover inconsistencies and holes in the
requirements specification during test-vector generation.

BMC can give a proof of unreachability of a test goal in certain conditions,
e.g., if loops can be unrolled completely or using k-induction [13], which is a
BMC-based technique for unbounded model checking.

2.4 The Coverage Closure Process

The algorithm that we implement to assist the coverage closure process is given
in Fig. 1. It proceeds as follows:
1. We start with an initial test suite that has been crafted manually or has been

generated using other test-case generation techniques like directed random
testing. The initial test suite may be empty, but many test goals can be easily
covered using test-case generation methods that are cheaper than Bounded
Model Checking. It is thus recommended to start with such a base test suite.

2. In the next step, this test suite is run using the coverage measurement tool
in order to obtain a list of non-covered test goals. Coverage measurement can
be performed on a developer machine to obtain approximate coverage, but
final certification data has to be obtained by running the test suite on the
actual target platform.

3. The test-vector generator takes the list of non-covered test goals and tries
to compute input values to cover them. Ideally, the test-vector generator
is parametrized with the architectural parameters of the target platform in

order to obtain guarantees that the goals are indeed going to be covered. As
our test-vector generator is a Bounded Model Checker, there will be three
possible outcomes of an attempt to cover test goals:
(a) A test goal has been covered. In this case this new test vector is presented

to the user who has to turn it into a new test case to be added to the test
suite. Note that building the new test case is the only part of the process
(bold edge) that is not fully automatic since human judgment is required
to identify why the corresponding test goal has not been covered in the
first place, i.e. distinguishing reasons (A)–(D) in Sec. 2.

(b) It is infeasible to cover a test goal. This happens when the test-vector
generator comes up with a proof of unreachability of the test goal. As
mentioned above, a Bounded Model Checker can provide such proofs
if the loops have been unwound completely, for instance. In this case,
the corresponding test goal can be annotated in the coverage report as
proven infeasible to justify its non-coverability. This increases effective
coverage by reducing the number of genuinely coverable test goals.

(c) The goal has not been covered and we were unable to prove infeasibility
of the test goal. With a Bounded Model Checker this can happen if the
chosen bound k has been too low. In this case the test goal will remain
uncovered and it can be tried to cover it with a higher value for k in the
next iteration of the process.

4. Coverage of the enhanced test suite is then measured again to identify test
goals that remain uncovered, and the process is repeated. Generated tests
typically will cover more test goals than intended. Measuring coverage be-
tween generating tests increases cost-effectiveness of the process by eliminat-
ing unnecessary test-case generations.

5. If there are no more non-covered test goals we have achieved full coverage
and the process terminates.
Note that the process depicted in Fig. 1 is not specific to our tool but applies

in general. In particular, it does not rely on the test-vector generator to guarantee
that a generated test vector covers the test goal it has been generated for, because
the coverage measurement tool will check all generated test cases anyway for
increasing the coverage. However, the generation of useless test cases can be
avoided by using a tool such as FShell that can provide such guarantees.

Then, in theory, termination of the process achieving full coverage can be
guaranteed, because embedded software is finite state. In practice, however, this
depends on the reachability diameter of the system [10] and the capacity of the
test-vector generator to cope with the system’s size and complexity.

3 FShell plugin for RVS Implementation

The input to the tool5 is a C program with an initial test suite. The output
of the tool is twofold. The first output is a set of generated test vectors that

5 RVS is licensed software. An evaluation version can be requested from http:

//www.rapitasystems.com. The licensing policy disallows anonymous licenses. To

http://www.rapitasystems.com
http://www.rapitasystems.com
http://www.rapitasystems.com
http://www.rapitasystems.com

augment the initial test suite to increase its coverage. The second output is a
coverage report detailing the level of coverage achieved by the initial test suite,
and the extra coverage added by the generated test cases.

Fig. 2. RVS Process

FShell has been integrated
into RapiCover as context
menu option, illustrated in
Fig. 3. RapiCover can be used
to select a single function,
call, statement, decision or
branch. The tool then uses
FShell to generate a test vec-
tor for this element. Alterna-
tively, the tool has a button
to generate as much cover-
age as possible. When this op-
tion is chosen, the tool goes
around the loop described in
Fig. 1, using FShell to repeat-
edly generate test cases to in-
crease the coverage as much as possible, verifying the obtained coverage with
RapiCover.

There is tension between the need to demonstrate that the activities pre-
scribed by ISO26262 have been met in spirit as well as with quantifiable criteria.
Recall that achieving 100% code coverage during testing does not ensure the
code meets its intent. Consequently the FShell plug-in would be provided as
advisory service, generating candidate test vectors, which a user can examine to
help them identify why their planned testing was inadequate. Values generated
need to be assessed for being valid for the system under test, i.e. reflect real
world values that could be input to a function, e.g. from a sensor.

3.1 Introduction to RapiCover

RapiCover6 uses instrumentation to determine which program parts have been
executed. Instrumentation points are automatically inserted at specific points
in the code. Execution of an instrumentation point is recorded in its execution
data. Upon test completion, RapiCover analyzes the execution data to determine
which instrumentation points have been hit.

The first step in the RapiCover analysis process is to create an instrumented
build of the application ((1) in Fig. 2). RapiCover automatically adds instru-
mentation points ((2) in Fig. 2) to the source code. The instrumentation code
itself takes the form of very lightweight measurement code that is written for
each target to ensure minimal impact on the performance of the software, and

compensate for this, we provide a video showing the plug-in here: http://www.

cprover.org/coverage-closure/rvs-fshell-demo.mp4.
6 http://www.rapitasystems.com/products/rapicover

http://www.cprover.org/coverage-closure/rvs-fshell-demo.mp4
http://www.cprover.org/coverage-closure/rvs-fshell-demo.mp4
http://www.cprover.org/coverage-closure/rvs-fshell-demo.mp4
http://www.cprover.org/coverage-closure/rvs-fshell-demo.mp4
http://www.rapitasystems.com/products/rapicover

Fig. 3. Screenshot of RapiCover with the FShell Plug-in

to support on target testing for environments with limited resources. The in-
strumented software and possibly an instrumentation library are compiled and
linked using the standard compiler tool chain. The executable produced is then
downloaded onto the target hardware. The executable is exercised and instru-
mentation data ((3) in Fig. 2) is generated and retrieved. This data is used to
generate coverage metrics.

3.2 Introduction to FShell

FShell7 is an extended testing environment for C programs supporting a rich
scripting language interface. FShell’s interface is designed as a database engine,
dispatching queries about the program to various program analysis tools. These
queries are expressed in the FShell Query Language (FQL). Users formulate test
specifications and coverage criteria, challenging FShell to produce test suites
and input assignments covering the requested patterns. The program supports a
rich and extensive interface. The expressions used for the FShell plugin for RVS
implementation are listed in Tab. 2 with syntax and examples.

Expression Name Syntax Example

Function Call @CALL(. . .) @CALL(X)
Concatenation . @CALL(X).@CALL(Y)
Sequence -> @CALL(X)->@CALL(Y)
Negation “NOT(. . .)” “NOT(@CALL(X))”
Repetition * @CALL(X)*
Alternative + (@CALL(X) + @CALL(Y))

Table 2. FShell expressions

@CALL(X) requires gen-
erated test cases to call
function X. This is the only
primitive expression used
in the module. The con-
catenation operator . joins
two expressions, requiring
them to be satisfied subse-
quently. As an example, a test case generated by @CALL(X).@CALL(Y) covers

7 Available from: http://forsyte.at/software/fshell

http://forsyte.at/software/fshell

int main() {
// ...
if (a == b || b != c) {

printf (”%d %d\n”, a, b);
}
return 0;

}

int main() {
// ...
Ipoint (1);
if (Ipoint(4, Ipoint(2, a == b) ||

Ipoint(3, b != c))) {
Ipoint (5);
printf (”%d %d\n”, a, b);

}
Ipoint (6);
return 0;

}

Fig. 5. Code example before and after after RapiCover instrumentation

a call to X immediately followed by Y. This is similar to the sequence operator
->, which requires the second call to occur eventually. @CALL(X)->@CALL(Y)
is thus fulfilled if a call to X is eventually followed by a call to Y. The negation
“NOT(@CALL(X))” is satisfied by every statement except a call to function X.
The repetition operator is implemented along the lines of its regular expression
pendant, such that @CALL(X)* is satisfied by a series of calls to X. Finally,
the alternative operator implements logical disjunction, such that (@CALL(X)
+ @CALL(Y)) will be satisfied if either a call to X or Y occurs.

The expressions and operators above are all that is used by the FShell plug-
in to generate the test vectors requested by RapiCover. Sec. 3.3 illustrates how
these expressions are used to convert test goals to equivalent FQL queries.

3.3 Use of FShell within RapiCover

Java
Module

FShell

RapiCover
Test Goals

FQL Queries

Test Vectors

Test Suites

Fig. 4. Plugin Architecture

The FShell plugin for RVS translates
test goals requested by RapiCover
into FQL queries covering these goals
in FShell, as illustrated in Fig. 4. Test
goals are specified using marker ele-
ments from the RapiCover instrumen-
tation, which can identify arbitrary
statements in the source code by as-
signing them an instrumentation point id. In accordance with MC/DC criteria,
decisions and their constituting conditions are further identified using unique
decision and condition point ids.

Fig. 5 shows an example program before and after instrumentation. The mod-
ule supports two categories of test goals: Instrumentation Point Path Test Goals
and Condition Test Goals. The former specifies a simple series of points to be
covered by FShell. The system also permits inclusive or and negation operators
in instrumentation point paths, allowing to specify a choice of instrumentation
points to be covered or to make sure that a requested instrumentation point is
not covered by the provided test vector. As an example, the instrumentation
point path 1->5->6 in Fig. 5 is only covered if the decision in the if state-
ment evaluates to true. Conversely, the path 1->NOT(5)->6 is only covered

Category Goal FQL

Instrumentation
Point Path Goal

Simple @CALL(Ipoint5) ->@CALL(Ipoint6) ->. . .

Disjunction (@CALL(Ipoint5) + @CALL(Ipoint6) + . . .)

Complement @CALL(Ipoint1).”NOT(@CALL(Ipoint5))*”.@CALL(Ipoint6)->. . .

Condition Goal
Condition

@CALL(Ipoint2f).”NOT(@CALL(Ipoint1))*”.
@CALL(Ipoint2t).”NOT(@CALL(Ipoint1))*”.+. . .

Decision @CALL(Ipoint4t)

Table 3. Test Goal Types and FShell Queries

if it evaluates to false. The former can be achieved with inputs a=1, b=1, c=2,
whereas the latter could be covered using the input vector a=1, b=2, c=2. Con-
dition Test Goals on the other hand are specified by a single decision point and
multiple condition points, as well as the desired truth value for each decision and
condition. This allows us to cover branch conditions with precise values for its
sub-conditions. As an example, the condition test goal (4,true) -> (2,false) ->
(3,true) would be covered by the input vector a=1, b=2, c=3.

The instrumentation elements introduced by RapiCover need to be mapped
to an equivalent FQL query using the features presented in Tab. 2. For this
purpose, we replace their default implementation in RapiCover by synthesized
substitutions which are optimized for efficient tracking by FShell. These mock
implementations are synthesized for each query and injected into the program
on-the-fly at analysis time. Standard FQL queries are then enough to examine
these augmented models for the specified coverage goals. Tab. 3 shows explicitly
how these goals can described using the FShell query syntax.

4 Evaluation

The FShell plugin for RVS has been tested on three industrial automotive use
cases: an airbag control unit (“airbag”), a park control unit (“eshift”), a break-
by-wire controller (“vtec”) and a smaller message handler benchmark (“msg”).8

4.1 Case Study: e-Shift Park Control Unit

To illustrate the characteristics of these benchmarks we describe the e-Shift Park
Control Unit.9 This system is in charge of the management of the mechanical
park lock that blocks or unblocks the transmission to avoid unwanted movement
of the vehicle when stopped. The park mode is enabled either by command of
the driver via the gear lever (PRND: park/rear/neutral/drive) or automatically.

8 The code for these benchmarks was provided by the respective companies un-
der a GPL-like license and can be downloaded here: http://www.cprover.org/

coverage-closure/nfm-package.zip
9 Provided by Centro Ricerche Fiat.

http://www.cprover.org/coverage-closure/nfm-package.zip
http://www.cprover.org/coverage-closure/nfm-package.zip
http://www.cprover.org/coverage-closure/nfm-package.zip
http://www.cprover.org/coverage-closure/nfm-package.zip

Fig. 6 shows the architectural elements the e-Park system is communicating
with. The vehicle control unit monitors the status of the vehicle via sensors and
informs the driver, in particular, about the speed of the vehicle and the status of
the gears via the dashboard. The e-Park Control Unit is responsible for taking
control decisions when to actuate the mechanical park lock system.

Among many others, the following requirements have to be fulfilled:
1. Parking mode is engaged if vehicle speed is below 6 km/h and the driver

presses parking button (P) and brake pedal.
2. If vehicle speed is above 6 km/h and the driver presses the parking button

(P) and brake pedal then commands from the accelerator pedal are ignored;
parking mode is activated as soon as speed decreases below 6 km/h.

3. If vehicle speed is below 6 km/h and the driver presses the driving button
(D) and brake pedal, then forward driving mode is enabled.

4. If vehicle speed is above 6 km/h then backward driving mode (R) is inhibited.

vehicle
control

unit
dashboard

ě-Park
Control

Unit

PRND
switches powertrain park lock

Fig. 6. e-Shift Park Control Unit

As is typical for embedded soft-
ware, the e-Park Control Unit soft-
ware consists of tasks that — af-
ter initialization of the system on
start-up — execute periodically in
the control loop until system shut-
down. A test vector hence consists
of a sequence of input values (sensor
values and messages received via the communication system) that may change
in each control loop iteration. We call the number of iterations the length of the
test vector.

To generate valid test vectors, a model of the vehicle is required. Otherwise,
the test vector generator may produce results that are known not to occur in the
running system, such as infinite vehicle velocity. For the case study this model
consisted of assumptions about the input value ranges, such as “The speed of the
car will not exceed 1000 km/h, or reduce below 0 km/h.” These assumptions
are part of the admissible operating conditions as stated in the requirements
specification.

4.2 Experimental Setup

In order to evaluate the FShell plugin for RVS, we used four different industrial
C source code case studies with a cumulative ∼6700 LOC. We started out with
an initial test suite consisting of 100 random test vectors of length 5 uniformly
distributed over the admissible input ranges10. Then we incrementally extended
this test suite by test vectors generated by the following two approaches:

10 We chose length 5 because it seemed a good compromise between increasing coverage
and keeping test execution times short for these case studies: on the e-Shift case
study, adding 100 test vectors of length 5 increased coverage by 1.1%; 100 test
vectors of length 10 increased it by only 1.3% while test execution times would
double and only half as many test vectors could be explored.

1. FShell plugin for RVS following the process illustrated in Fig. 1.
2. A combination of test vector generation based on random search and greedy

test suite reduction.
We compared the achieved coverage gain and resulting test suite sizes after
running both approaches for 8 days, with the exception of the message handler,
which we only ran for 3 hours due to its smaller code size. 11 Tab. 4 describes
our experimental setup.

The runtime of FShell is worst-case exponential in the loop bound of this main
loop. Choosing a too high loop bound results in FShell taking prohibitively long
to run, yet setting the loop bound too low results in some branches not being
coverable. As mitigation, we started the experiment with a loop bound of 1, then
we gradually increased the loop bound to cover those branches that we were not
able cover in previous iterations. As explained in Section 2.1, step 6 in Tab. 4
is not automatic since it needs information from the requirements specification.
For the sake of our comparison that does not care about the pass/fail status of
the test, we skipped the manual addition of the expected test outcome.

4.3 Results

The results of our experiment are detailed in Tab. 5. They indicate that more
than 99.99% of the generated test vectors added by the random search are re-
dundant and do not increase coverage. This confirms that these case studies

11 The msg benchmark achieved 100 loop unwindings in 3 hours, compared to 37, 6
and 58 unwindings for airbag, eshift and vtec in 8 days.

FShell plugin for RVS random search + reduction

1. Start with the initial test suite.
2. Compile and run the C source code with the current test suite, using

RapiCover to generate a coverage report.
3. RapiCover provides FShell with a list

of non-covered test goals.
4. FShell generates a test vector for these

non-covered test goals.
Generate a random test vector, uni-
formly distributed over the admissible
input ranges.

5. FShell feeds back information about in-
feasible test goals and test vectors for
feasible test goals.

6. Automatically create C test cases based on these test vectors.
7. Re-compile and re-run the C code with this new test case, using RapiCover

to verify that the generated test case does indeed cover the test goal.
8. If the coverage has increased then keep

the test case; otherwise discard it.
9. Repeat from step 3.

Table 4. Experimental setup of the two approaches that we compare.

airbag eshift vtec msg
Test Cases Init Rnd FS Init Rnd FS Init Rnd FS Init Rnd FS
Generated 100 35k 6 100 35k 6 100 16k 4 - 9k 1

New - 0 6 - 13 6 - 2 4 - 0 1

Coverage (%) Init Rnd FS Init Rnd FS Init Rnd FS Init Rnd FS
Statement 41.6 41.6 83.8 52.2 53.0 53.2 76.3 77.3 79.3 87.9 87.9 89.6

Increase - 0.0 42.2 - 0.8 1.0 - 1.0 3.0 - 0.0 1.7
MC/DC 16.0 16.0 68.0 31.2 34.5 36.8 40.0 48.0 64.0 53.8 53.8 61.5

Increase - 0.0 52.0 - 3.3 5.6 - 8.0 24.0 - 0.0 7.7

Table 5. Evaluation results: Comparing FShell plugin for RVS against test vectors
generated by random search.

represent particularly challenging cases for black-box test vector generation and
that only very few test vectors in the input range lead to actual coverage increase.

The FShell plugin for RVS outperforms the random search strategy in all
tested benchmarks. The difference between the two approaches becomes more
pronounced for more complex benchmarks, which is expected. As an example,
the random search is unable to generate any coverage for the complicated, multi-
threaded airbag example, whereas the FShell plugin for RVS more than triples
the initial coverage. On average our approach increased MC/DC coverage by
22.3% and statement coverage by 11.9%. By comparison, the random search
only achieved an average 2.8% and 0.5% increase. The average test vector length
generated by FShell plugin for RVS is 7.4.

This evaluation thus underlines the benefit from our tool integration to sup-
port the coverage closure process on industrial case studies. The expected reduc-
tion in manual work needs to be investigated in a broader industrial evaluation
involving verification engineers performing the entire coverage closure process.

5 Background and Applicability

There is much work existing for test case generation using Model Checking tech-
niques [5], but a smaller amount targeted directly at the high criticality safety do-
main where the criterion and frameworks for test case generation are restricted.
A useful survey relating to MC/DC can be found in [15]. In [6] Ghani and Clark
present a search-based approach to test generation for Java—a language which
is rarely used for safety-critical software, and particularly not for the most crit-
ical software. Their goal is to generate tests to ensure that the minimal set of
truth tables for MC/DC were exercised, but without consideration of the va-
lidity of any of the test data by on-target coverage measurement. Additionally,
we emphasize that our approach takes into account existing coverage that has
already been achieved and complements the requirements based testing, rather
than completely replacing it. Other work such as [9] looks at modification of the
original source through mutation testing in order to assess effectiveness of the
tests. This could be considered a useful adjunct to our methodology.

Lessons Learnt. In order to encourage wider adoption of this integrated tool,
we need to consider where it would fit in users’ workflow and verification pro-
cesses, as well as meeting the practical requirements of the standard. As noted
earlier, fully automated code coverage testing is not desirable as it misses the
intent of the requirements based testing process. However, achieving full code
coverage often requires a large amount of manual inspection of coverage results
to examine what was missing. Hence providing the user with suggested test data
is potentially very valuable and could improve productivity in one of the most
time consuming and expensive parts of the safety certification process.

Another benefit of integrating test case generation and coverage measurement
is test suite reduction. The coverage measurement tool returns for each test case
a list of covered goals. Test suite reduction is hence the computation of a minimal
set cover (an NP -complete problem). Approximate algorithms [14] may be used
to achieve this in reasonable runtimes.

FShell uses a class of semantically exact, but computationally expensive,
NP -complete algorithms relying on SAT solvers. Depending on the programs
or problems posed to the solver the analysis may take long time to complete.
Initial feedback on the tool showed that the concept was very well received by
automotive engineers. Speed was considered an issue, however, keeping in mind
that today’s practice for full coverage testing may take several person months
with an estimated cost of $100 per LOC,12 there is great potential for cutting
down time and cost spent in verification by running an automated tool in the
background for a couple of days.

Initially, we sometimes failed to validate that a test vector that was gener-
ated to cover a test goal actually covers that test goal. E.g., one reason were
imprecise decimal number representations in the test vector output. Using the
exact hexadecimal representation for floating point constants fixed the prob-
lem. This highlights the value of bit-exact analysis as well as the importance of
re-validating coverage using RapiCover in the process (Fig. 1).

Note also that this process itself is independent of the tools used which offers
a high degree of flexibility. On the one hand, it is planned that in future RVS will
support alternative backends in place of FShell. On the other hand, FShell can be
combined – without changing the picture in Fig. 1 – with a mutation testing tool
(in place of RapiCover) to generate test vectors to improve mutation coverage.

6 Conclusion

This paper has demonstrated the successful integration of the FShell tool with an
industrial code coverage tool. Using the integrated tools we were able to increase
MC/DC code coverage of four industrial automotive case studies by 22.3% on
average. When compared to a random black-box test vector generation strategy,
our approach was on average able to generate 796% more MC/DC coverage
within the same amount of time. Our tool achieves this coverage gain with

12 Atego. “ARINC 653 & Virtualization Solutions Architectures and Partitioning”,
Safety-Critical Tools Seminar, April 2012.

half as many test vectors, and these test vectors are much shorter than those
generated by random search, leading to more compact test suites and faster test
execution cycles. Moreover, the integration of the two tools simplifies test case
generation and coverage measurement work flows into a unified process.

Future work will consider better integration with the debugging environment
to inspect test vectors, and warning the user about potentially unrealistic envi-
ronment assumptions such as ∞ for vehicle speed. In addition, better support
should be provided for exporting the test vectors into the users’ existing test
suite and testing framework. Moreover, we would like to compare with other
tools and further evaluate the coverage benefit from the exact floating point
reasoning that we use in comparison to, e.g., rational approximations.

References

1. ISO26262 road vehicles – functional safety, Part 6: Product development at the
software level, Annex B: Model-based development (2011)

2. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without
BDDs. In: TACAS. pp. 193–207 (1999)

3. Clarke, E.M., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
TACAS. pp. 168–176 (2004)

4. Dupuy, A., Leveson, N.: An empirical evaluation of the MC/DC coverage criterion
on the HETE-2 satellite software. In: Digital Avionics Systems Conference. vol. 1,
pp. 1B6/1–1B6/7 (2000)

5. Fraser, G., Wotawa, F., Ammann, P.: Testing with model checkers: a survey. Soft-
ware Testing, Verification & Reliability 19(3), 215–261 (2009)

6. Ghani, K., Clark, J.A.: Automatic test data generation for multiple condition and
MCDC coverage. In: ICSEA. pp. 152–157 (2009)

7. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: FShell: Systematic test case
generation for dynamic analysis and measurement. In: CAV. pp. 209–213 (2008)

8. Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. Transactions on Software Engineering 37(5), 649–678 (2011)

9. Kandl, S., Kirner, R.: Error detection rate of MC/DC for a case study from the
automotive domain. In: Software Technologies for Embedded and Ubiquitous Sys-
tems. pp. 131–142 (2010)

10. Kroening, D., Strichman, O.: Efficient computation of recurrence diameters. In:
VMCAI. pp. 298–309 (2003)

11. Rierson, L.: Developing Safety-Critical Software: A Practical Guide for Aviation
Software and DO-178C Compliance, Chapter 14.3 Potential Risks of Model-Based
Development and Verification. CRC Press (2013)

12. Schrammel, P., Melham, T., Kroening, D.: Chaining test cases for reactive system
testing. In: ICTSS. pp. 133–148 (2013)

13. Sheeran, M., Singh, S., St̊almarck, G.: Checking safety properties using induction
and a SAT-solver. In: FMCAD. pp. 108–125 (2000)

14. Tallam, S., Gupta, N.: A concept analysis inspired greedy algorithm for test suite
minimization. In: PASTE. pp. 35–42 (2005)

15. Zamli, K.Z., Al-Sewari, A.A., Hassin, M.H.M.: On test case generation satisfying
the MC/DC criterion. International Journal of Advances in Soft Computing & Its
Applications 5(3) (2013)

	Assisted Coverage Closure

