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Abstract. Soundness is a major objective for verification tools. Methods
that use exact arithmetic or symbolic representations are often pro-
hibitively slow and do not scale past small examples. We propose the
use of numerical floating-point computations to improve performance
combined with an interval analysis to ensure soundness in reach-set com-
putations for numerical dynamical models. Since the interval analysis
cannot provide exact answers we reason about over-approximations of
the reachable sets that are guaranteed to contain the true solution of
the problem. Our theory is implemented in a numerical algorithm for
Abstract Acceleration in a tool called Axelerator. Experimental results
show a large increase in performance while maintaining soundness of
reachability results.

1 Introduction

Linear algebra packages have been developed in various flavours [1,17,23]. While
the most formal of these packages use symbolic algorithms to ensure soundness, the
most successful tools for large-scale applications sometimes sacrifice numerical
soundness in favour of performance [13]. Similar trade-offs can be made in
a number of related algorithms. For instance, eigenvalue problems frequently
require matrices that are several orders of magnitude larger than those that
symbolic evaluation can handle, and thus, are typically solved using floating-
point calculations.

Floating-point computations cover a very wide range of problems, and are
orders of magnitude faster than both symbolic and rational arithmetic. They are
however, subject to rounding errors, which presents a number of challenges [16,27]
that need to be addressed in order to obtain valid results.

The first problem we will focus on is that of soundness. Once an unknown
error has been introduced, it is impossible to establish the correctness of the
answer (although in most cases it will be correct to a given accuracy, we have
no way to prove or disprove it). This problem can be solved with the use of
interval arithmetic. By rounding outwards (i.e., increasing the size of the interval
to include the error), we ensure that the true answer is always contained inside
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the interval, thus soundness is preserved. Using interval arithmetic can typically
increase the computation time by a factor of four (see Section 6), which is
moderate compared to the speed-up provided by the use of floating points.

The next problem we face regarding rounding errors is that they are cumulative.
Each numerical operation performed will typically increase the error by a small
amount, leading to a significant error after a large number of operations. When
using intervals, this means that although the true result may be contained by
the answer, the over-approximation could be large enough as to make this result
meaningless. This means that some problems will require higher precision than
others (in practice, a multiple precision arithmetic package will allow us to
select an arbitrarily large precision). This comes at a cost dependent on the
selected precision, so it is important to select an appropriate value for each
problem. Algorithms requiring less iterations are therefore preferred to minimise
the precision requirements.

The final challenge presented by the use of interval arithmetic appears when
using comparisons to make binary decisions. When intervals partially intersect, it
may not always be clear what the result of such comparisons should be. Therefore,
we need to establish an order for the interval arithmetic.

In the following, we will discuss the above concepts with respect to a repre-
sentative algorithm that benefits from the use of numerical algorithms. We use
Abstract Acceleration [6,21], which is a method that relies on solving linear
programs in their corresponding eigenspaces. Since we look to study large dimen-
sional problems, we work on a convex polyhedral domain, which in the case of
1-dimensional models reduces to standard interval arithmetic.

The main contribution of this work is to develop a sound numerical algorithm
for Abstract Acceleration taking care of the errors introduced by the computations
at each step. This goal entails the following:

1. We develop a numerical Simplex with error bounds using interval represen-
tations that ensures results are sound over-approximations of the original
problem, i.e., the true results are always contained in the intervals. We note
that, unlike previous work on sound linear solvers, our algorithm can reason
about problems with pre-existing bounded errors in the problem statement.

2. We develop a Vertex Enumerator using intervals that ensures that all possible
vertices of the original polyhedron (i.e., the expected polyhedron that would be
obtained using exact arithmetic) are found within the hypercubes representing
each abstracted vertex.

3. We develop a fast algorithm for describing eigenspaces of matrices within
known error bounds. While this can largely be achieved using existing pack-
ages, the need to integrate multiple precision numbers with interval arithmetic
and dealing with Jordan forms while maintaining a reasonable speed has
motivated the development of a slightly different implementation.

4. We implement these techniques in the software tool Axelerator.?
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2 Preliminaries

Our work relies heavily on Interval Arithmetic and Convex Polyhedra, which are
defined in the following.

Definition 1. An interval domain is an abstract domain over the reals that
defines a set of numbers by an upper and lower bound. We use the notation:

[]=[zT)={zeR | z<z<7T} (1)
lz=lz Z={z |z <z <T}:z€R (2)
=lzz={z|z<z<T}:zeR (3)

to represent an element of the domain. We also define the operators +, —,**,/ as
the sum, subtraction, multiplication and division of an interval, with the following
properties:

[21] + [w2] = [(z1 +25) (T2 +T2)], (4)
[21] = [w2] = [(z1, = F2)  (T1 — z5)], (5)
[21] * [z2] = [inf (2,29, 2, T2, T125, T1T2)  sup(x,2,,2,To, T1Z9, T1Z2)],  (6)

%Tl]: |:lIlf (mlaxlyxl7x1> sup (5617.1;17:1;17:61):| Og[xZ 1'2]

Lo T2 Zo T2 Ty To Ty T2
(7)

Note that division is not defined for denominator intervals containing 0. This case
never applies to our algorithms since pivots, which is the only operation requiring
division, operate on non-zero values. Additionally, any monotonic function over
the reals can be mapped into an interval equivalent as:

f(@) = [f1([]) = [inf(f(2), f(@))  sup(f(z), f(T))]- (8)

In the case of non-monotonic functions, such as trigonometric operations, the
calculation of [f]([x]) has to take into consideration the minima and mazima of
the function over the interval [z].

The above definitions are over the reals, which means that the result of any of
these operations is exact. However, when using Finite Word Length representations
such as floating points, results may not be representable in the given format and
are implicitly rounded. In order for interval arithmetic to be sound, these domains
must always round the upper limit upwards and the lower limit downwards, thus
expanding the interval. These operations are well defined within the IEEE-754
standard [19] as well as in existing multiple precision libraries, such as mpfr
[12], so we will not discuss the details here. For a full description of interval
arithmetic over IEEE-754 floating point representations see [30].

Definition 2. The support function of a point * € R™ in a given direction
v € R" is a scalar

pa(v) = - v, 9)

4 As standard, we will often omit this operator in the following.



where - is the dot product between vectors. This can be extended to set X, so that
px (V) =supgex T - V.

Definition 3. A convez polyhedron is an intersection of half-planes in R™ that
is closed and non-empty. It can be described by the equation Cx < d : C €
R™*" ¢ € R",d € R™. Each row in C corresponds to a vector normal to a
bounding hyperplane of the polyhedron, while the corresponding element in d is
the support function of the hyperplane. The hyperplane consists of all of the
points x that meet the criterion C;x = d; (where i denotes the i-th component,
and C; the corresponding row).

3 Related work

There are several tools and approaches using numeric computations for reacha-
bility analysis of large scale systems. Tools such as FLOW [8] or COSY [31] use
Taylor models with remainder errors to calculate reach sets of non-linear systems.
Floating point errors are over-approximated by pre-defined metrics on the calcu-
lations. SpaceEx [13] uses linear program analysis to rigorously evaluate reach
sets. It also offers an option using support functions with numerically unsound
calculations to achieve fast results. Similarly, reachability analysis tools relying
on numeric algorithms contained in MATLAB [25] are likely to be unsound since
error bounds are not typically provided in most of the enclosed algorithms. Set
based simulations, like HYSON [3] or HYLAA [2] use set representations such as
zonotopes and polyhedra to evaluate reach tubes.

Although a large number of algorithms have been developed to find rigorous
bounds for linear equalities [24], there are not as many studies doing the same
for optimal solutions over linear inequalities (which is the basis for Polyhedral
Analysis). Polyhedral Analysis (as used in [6,13,20]) may require linear decision
procedures to find solutions. These procedures would all benefit from numeric
implementations with error bounds that meet the requirements for sound over-
approximations.

There are historically two decision procedures that are commonly used for
linear arithmetic: Fourier-Motzkin elimination and the simplex method. Most
SMT solvers implement the latter because of its better performance when using
rational arithmetic, while linear abstraction domains favor it for its performance
on linear optimization problems. The original simplex has been revised numerous
times; in particular, there is a variant that exploits duality for correction of
accumulated errors in the case of unsound or imprecise arithmetic. Although
some tools favor unsound implementations [13], there are numerous use-cases
where the need for soundness prohibits the use of floating-point arithmetic.

Two solutions have arisen to address this problem. The first one [26] uses
a fast floating-point based implementation of simplex to traverse the vertices
of a polyhedron and then follows the selected pivots by using sound rational
arithmetic along the same path. If the fast method produces a wrong result, the
rational simplex continues its computation (thus losing the speed advantage)
until it finds the correct solution.



The second method [7] uses interval arithmetic in Fourier-Motzkin elimination
to over-approximate the solution for abstract polyhedra domains. Since abstract
domains are typically over-approximations of the concrete domains they abstract,
exact solutions are not necessary, and these over-approximations are acceptable.
These two methods show an improvement in speed performance three- to ten-
fold, in most case studies. However, the analysis done in [29] shows that for a
large number of real-world programs evaluated by openSMT, using an unsound
floating-point simplex is marginally faster (13%) than the exact rational simplex.
This is due to some optimizations in the handling of rationals inside the SMT
solver and the fact that most benchmarked cases do not require higher precision
arithmetic. However, we are interested in optimality as opposed to feasibility,
which due to the larger number of pivots is likely trigger this case more frequently.
For this reason, many of the methods and analyses presented for the SMT case
are not necessarily well-suited for our use-case.

The algorithm in [15] provides an alternative: an iterative refinement method
provides means to select the precision of the result arbitrarily. While this does
not directly imply soundness, it can provide alternatives for j—checks to ensure
it, though as all previously mentioned papers, it only addresses the problem of
floating-point rounding errors. One of the problems presented here is that there
are cases where imprecision appears even before calling the decision procedure.
In the case of polyhedral abstractions, linear transformations may cause the
numerical representations to grow in the rationals long before the objective
function is called. We particularly refer to dynamics where primal components
such as eigenvalues are extracted using numerical algorithms with bounded errors
which are therefore present at their injection on the simplex. Similarly, there
are cases where the actual program will have limitations in the representation
of certain numbers which must be evaluated as small intervals. While a precise
simplex is capable of performing such operations, the combinatorial explosion can
render the problem intractable, and the use of an interval floating point simplex
is evidently more efficient.

Error bounds for linear and mixed integer programming have been researched
in [28]. The authors make use of interval arithmetic, and more specifically rounding
modes, to find error bounds on optimal outcomes of the problem. Their approach
allows the use of off-the-shelf algorithms for solving a linear problem using pre-
and post- processing to deal with the errors. Unfortunately, this approach excludes
the possibility of missing pivots, which means that the maximal vertex may not be
reached. This can cause an unnecessarily large error bound to be discovered due
to the symmetry in their calculation. Additionally, they do not address problems
where the statement is already in interval form due to pre-transformations. To
the best of the authors’ knowledge, there are no existing techniques for sound
numerical analysis in a polyhedral domain suitable for dealing with pre-existing
errors in pipelined modular processes.

In addition to the linear programming operations, we note that many reacha-
bility tools depend on eigen-analysis to find solutions [6,13,21]. In fact, tools that
verify continuous systems through discretization require such a component. Nu-



merical analysis offers an incredible increase in speed performance. With respect
to the eigen-decomposition itself, the most common approaches to estimating the
error are those implemented in LAPACK [1]. These are based on the separation
between eigenvalues and offer moderately tight bounds for both eigenvalues and
eigenvectors. They do not however deal well with multiplicity since the formulas
depend on condition numbers which become increasingly large when the gap
between two eigenvalues is small. A formal approach to eigenvalues with alge-
braic multiplicities is offered by [32]. The authors provide a sound algorithm for
finding the boundaries of both eigenvalues and eigenvectors based on an iterative
estimation of the sub-eigenvector matrix relating to a cluster of eigenvalues.
Their main limitation lies in the fact that the iterations are computationally as
expensive as finding the estimations themselves, which is not a bad tradeoff. Since
these values are often very small (typically insignificant with respect to other
over-approximation errors), we choose speed over precision, and may compensate
by using more precise data types at a lower time cost overall.

4 Abstract Acceleration

The problem statement we use to drive our discussion is that of Abstract Accel-
eration [6,21]. Given an iterative program with dynamics

Tpr1 = Az 2, ERTANAERVT AL E[0 oo, (10)

we want to find all possible states visited over an infinite time horizon starting
at an initial set Xy. We call this set the reach tube of the model:

X = {zr, 1 k € [0 co[Axg € Xo A xpy1 = Axy}. (11)

It is easy to see that the infinite number of iterations would result in an unbounded
cumulative rounding error, but using Abstract Acceleration we transform this
problem into a one-step solution. We first change the problem statement by
means of acceleration into

X = {xp = AFzo : k € [0 co[Azo € X}, (12)
and further define new model semantics and corresponding set:

X C Xt = AXj, such that U AF C A, (13)
ke[0 oof

where the newly introduced abstract reach tube X! is an over-approximation of
the reach tube of the model [21]. All we need to do is define the nature of AXj.

Let SJS™! = A be the eigen-decomposition of A, where S is the set of
generalised eigenvectors of A and J is the Jordan form containing the eigenvalues
of A in its main diagonal. We correspondingly define 7 = 8! AS, which is such
that 7 2 Ukepo s "



Given a set X = {x : Cx < d}. The linear transformation =’ = §~ ' leads
to set
X' =87'X ={a': CSz’ < d}. (14)
Analogously, let X, = §7'X; and X"* = §7'X? be the initial set and the
abstract reach tube mapped onto the eigenspace of matrix A. We may transform
equation (13) into:

X' C X" = 7X}, such that U Jkcy, (15)
ke[0 oo

where X’ = §71X and J is a convex polyhedron representing restrictions on the
eigenvalues of A. X't is calculated by applying a simplex algorithm with a tableau
defined by J and objective functions derived from each vertex of X{ (step (10) in
Algorithm 1 below). We note, however, that if we wish to use numerical analysis
in the decomposition of A, the Tableau in J contains small intervals given by
the errors, which cannot be processed efficiently by a regular simplex and require
a new procedure. Also note that the error bounds for S will have a similar effect
on the objective functions.

The calculation of the abstract reach tube via abstract acceleration is encom-
passed in Algorithm 1, which can be summarised as follows (its steps are denoted
in parentheses):

1. We perform unsound eigen-decomposition using an existing algebra package
(lines 2-3).

2. Then we restore soundness to the results using the methods described in
Section 5.2 (lines 4-5).

3. The inverse of the matrix of eigenvectors is calculated after soundness is
restored, using interval arithmetic in order to ensure its soundness (line 6).

4. The abstract dynamics are obtained by evaluating the convex hull of all
powers of eigenvalues up to the desired number of iterations as described
in [6] (line 7).

5. Using Equation (14), transform the initial state into the eigenspace (line 8).

6. Extract the vertices of the eigen-polyhedron X{ using the sound over-
approximation of the double description algorithm [14] from Section 5.4
(line 9). Tt is worth noting that this algorithm uses a simplex to seed it: we
will first discuss the simplex algorithm, which is also needed at the next step,
and then the vertex enumeration algorithm used at this stage.

7. Calculate the mapped abstract reach tube X' that over-approximates the
image of the reach tube in the eigenspace (line 10). This is achieved by
evaluating a set of objective functions using the abstract dynamics as a
simplex Tableau, and via a sound simplex described in Section 5.3. The
objective functions are defined by the vertices of X, denoted as Vp, and by
the desired template directions, such that

wij:’UZ‘Ot]’Z’UZ'EVO/\t]'ET,

where T is the set of template directions, and o denotes a component-wise
multiplication yielding a vector.



8. Using Equation (14), find the reach tube X% = SX’t (line 11).

Algorithm 1 Calculation of Abstract Reach Tube Using Abstract Acceleration
Input: XA, k.

Output: X*

1: function findAbstractReachTube()

2: J = calculateEigenvalues(A)
S = calculateEigenvectors(A)

[J] = soundifyEigenvalues(A, J, 5)
[S] = soundifyEigenvectors(A, [J],
[S]™! = calculateInverse([S])
J = getAbstractDynamics([J])
[X{§] = transformInitialSpace(Xo, [S]™)
9: [Vo] = getVertices([Xp])
10: X" = getReachTube(7, [Vo])
11: X* = transformReachTube(X"*, [S])
12: end function

5)

5 Implementation

5.1 An Interval Partial Order for Vector Spaces

Interval arithmetic is widely researched and used in the literature. The main
issue in its implementation here is with respect to ordering, since some of the
operations used require ordered sets. While real numbers have a well defined
order, there are several different options regarding the order of real intervals.
This creates a problem for programs dealing with branching since an incorrect
assumption on the order will cause undetermined behaviour. The reader is referred
to literature [5,9-11] for possible orderings of real intervals. In this paper, we
have selected the following paradigm:

Let [z] = [z 7] be an interval of real numbers such that
[z] <0 T<0
[z] >0 z>0
[z] =0 —e<z<0A0<LZT<e (16)

[z] is deemed imprecise < —-eAT>0Vz<O0AT > e,

where e is a user-defined error bound.

The first two definitions correspond to precedence definitions in the IEEE
standard, but the third one is an enabling comparison (i.e. it corresponds to
“may be equal to”) which is not present in the standard. Throughout this work
this latter definition is useful because the operations that relate to this condition
have no negative effect if applied when the condition is false (apart from the
increased processing time of the operation), nor do they compromise soundness.



Imprecise numbers break the ordering: for example, they could be originally
non-zero elements whose error touches zero — while this situation does not break
the soundness of the algorithms described in this paper, it affects their precision
and completeness, as described in Section 5.3). As such, it is established that
the appearance of an imprecise number forces a change in the error bound e or
an increase in the precision, so that the accumulated errors do not surpass this
bound (e). From the above paradigm we can easily derive that

2] =[y] <= [z]-[y] =0
[z] <[y] &= [2] -[y] <O (17)
[2] > [y] <= [z]—[y] >0,

which results in our ordering.

We will extend this definition to the dot product of two vectors, in order to
establish equality in higher-dimensional spaces (in particular, this will allow us
to set an ordering of value pairs). Let v = [[v1] - - [v,]]" and u = [[uq] - - - [un]]”
be interval column vectors, with [d] =V - u , then we say that

vV-u<0 d<0
v-u>0 d>0 B (18)
v-u=20 —e<d<0ANn0<d<e

V- U is deemed imprecise otherwise.

5.2 Eigen-Decomposition

The first stage required for Abstract Acceleration is the eigen-decomposition of
the dynamics (steps 2-3 in Algorithm 1). We seek to find the Jordan form of a
matrix, characterising its eigenvalues alongside their corresponding eigenvectors,
with known error bounds for both. For this purpose we use the package eigen [17],
which contains an efficient fast numerical eigensolver using Schur decomposition.
The main advantage of eigen over other packages is that it is a template library
which can be used with any numerical data type. Since we are interested in using
multiple precision floating point integers, this is an important feature of the
desired package. Unfortunately, the eigen-decomposition cannot be performed
using interval arithmetic. This is because numerical solvers for this problem
exploit the convergence of successive results towards a precise value. While the
process is known to converge, the latter iterations will typically oscillate around
the final values, which causes the interval containing the final eigenvalue to
expand, resulting in a width that becomes unbounded, rather than in a small
interval around the expected result. We therefore use standard arithmetics to
obtain a numerical approximation of the true eigenspace, and then find error
bounds using interval arithmetic to generate the intervals containing the true
values in the eigenspace. Namely, we call a standard unsound eigen-decomposition
algorithm, and later make it sound by creating intervals around the results using
soundly-calculated error bounds.

We remark that these error bounds are found in the LAPACK [1] package,
used by programs such as Matlab, and could therefore be correctly obtained by



using this tool. However, four issues drive us away from LAPACK. The first is
that the library is written in FORTRAN and uses double-precision floating-point
arithmetic: this restricts our ability to use higher precision to obtain smaller errors.
The second is that some of the procedures used in LAPACK to calculate the error
can be time consuming, which can have a large impact on the overall processing
time. The third one is that LAPACK does not allow the use of intervals, hence
the operations that calculate the error bound have rounding errors themselves
and are thus unsound. The final problem is that LAPACK does not provide
Jordan forms with geometric multiplicities, nor can it always ensure the error
bounds for algebraic multiplicities greater than one.

The calculation of the error bounds for soundness is performed in two stages,
first for the eigenvalues and then for the eigenvectors (the latter requires the
sound eigenvalue intervals in its calculation).

We first define an interval matrix, which will be used during both stages. Let

[maa] -+ [mag]
MeRP*=| : . || (19)
[mp1] -+ [mpq]
where [m;;] = [@ miw} i€ [l...p]Aj € [l...q] be an interval matrix.

Interval arithmetics between interval matrices derives directly from the operations
between their elements. We may trivially construct an interval equivalent of any
non-interval matrix using the following definition:

M= M iff V[my] €M, my; =my; =my; € Mri€[l...p]Aje[l...q. (20)

Error Bounds on the Eigenvalues (step (4) in Algorithm 1).

Theorem 1. Given an eigenvalue \; with algebraic multiplicity m; obtained
using Jordan decomposition, the error of the numerically calculated eigenvalue \;
s upper bounded by the formula:

E m; = 1 . R
ex, < em, = pmi s where £ = max (k <S) SIS~ — A||2> , (21)
1-E™i

where m; is the geometric multiplicity of A;, S =8 are the calculated eigenvectors
of A, 3 = J its calculated Jordan form and k(M) is the condition number of a given
matriz M that is defined as [omaz]|(M)/[0min](M), where [o;] are the singular values
of M.% The obtained matriz J = [J —sup(em,) I  J+sup(e, )JI| D2 J:i €[l ...n)
s a sound over-approzimation of the diagonal matrix with the eigenvalues of A.
All matrices are in R™*™.

® Note that this is equivalent to k(M) = [[M][,[[M™"|,.



Proof. Let us first assume that matrix A is diagonalizable (an hypothesis relaxed
below). Let us also define the numerically calculated approximation A~ A
with Jordan form J and eigenvectors S. Then the error bound for each of the
eigenvalues is [33]:

Q . foaa 1
ex, = [Ai = Ail <k(S)[|A - All, = k(S)[|A - SIS |, (22)

Note that symmetrically

. A A PONPOPP |

ex; = e, = i = M <k(9)[|A— A, =k(S)STS - Al,  (23)

as long as A=8JS8 - has no rounding errors. Therefore, to ensure soundness,

we must translate the error calculation into an interval arithmetic problem.
Using (20), Equation (23) then becomes

ex; < sup (k: (é) 1S3S~! — A||2) .

For simplicity, we will hereon use A=S351.

We could calculate tighter bounds for each eigenvalue using the condition
number of individual eigenvectors (which is defined for non-square matrices as
k(M) = || M||,||M™" ||, where M is the pseudo-inverse of M), but we choose
this faster approach expecting the increased error to be negligible with respect
to the dynamics.

Extending our analysis by relaxing the assumption made above, when there
exists a Jordan block in A with geometric multiplicity m;, then the error can be
derived by leveraging [33] as follows:

[Ai—Ai| ™ _ 5. [Xi— A mi oneye
(1A= Ag)mi =1 (L4 = AiD) ((1+\/\z‘—15\1:|)> < k(9)|SJS 1A||2
i—Xi Fa Sdyal mi S\ IIA m;
- e < (k(S)HSJSl — Al,) "™ < sup (k(S)IA - All)
(K(S)IIA-A],) ™ )

1 (K(S)|A—All,) ™

= ey, <sup

However, this bound requires that the correct Jordan shape be selected (i.e.,
the one that corresponds to the original dynamics without numerical errors),
which means we need to use the formula using the largest possible Jordan
block for each set of similar A (i.e., eigenvalues which intersect given their error
intervals). In fact, this is not enough to ensure the bound since different shapes
will result in different condition numbers (since they will have different generalized
eigenvectors), so we are forced to calculate the maximum bound for all options.
We will see later how to overcome this difficulty in a more efficient way. a

Now that we can obtain sound eigenvalues, we will proceed to restore soundness
to the eigenvectors.



Error Bounds on the Eigenvectors (step 5 in Algorithm 1).

Theorem 2. The interval eigenvector

v;
V;, = \77, COS([Q]Z') !
{ ([ i)
], < [0]; = ( n ) A=Al GV = DTl
n—1 nz [[;.; (A - )™ 2
is an over-approximation of the true eigenvector v;. Here, n is the dimension
of A, m; is the size of the i*" Jordan block of A, V; = ¥; the numerically calculated
" eigenvector of A, [\;] the error-bound interval for the i eigenvalue of A
(inherited from above), and U = Q~1AQ where Q = Q the Schur decomposition
of A.
Given sufficient precision in the numerical calculations, we have that [0]; <
This inequality can always be obtained by increasing precision.

} D v;, where (24)

IN

us
R

Proof. The error angle between the numerically calculated i*" eigenvector and
the true i*" eigenvector of A is

-1
lA—-S8J5 |,

0; = cos (v - D) < oy
K2

Hlvilly = l[oall, = 1, (25)
where v; is the original i*" eigenvector, ¥; is the numerically calculated eigenvector,
and sep, is the separation between Jordan blocks, which is calculated as follows.

Let U be an upper triangular matrix such that AQ = QU with Q a unitary
matrix (Q ™' = Q). This is the Schur decomposition of A. The eigenvalues of
A are the diagonal entries of U. There are s! different matrices U (where s is
the number of Jordan blocks) corresponding to all possible permutations of the
eigenvalues of A in the diagonal. Let

U = |:U11 U12

0 U22:| 7U11 € Rmxm7U22 S R(n—m)x(n—m)7

such that the eigenvalues of U, are the eigenvalues of the i*" Jordan block
of A,J; € R™*"™. The separation sep, of J; is the smallest difference between
any singular value of U1 and those of Usgz [36]. This value can be obtained by
computing the smallest singular value of the Kronecker product [22]

K=U;1® I(n—m),(n—m) - I'm,m ® Uas.

However, this computation is expensive. Moreover, a permutation of the matrix
U must be executed for each different eigenvalue of U. Hence, we look for a
solution that avoids computing these values altogether.

First we will find a lower bound for the separation, which can be obtained by
applying [18] to the Kronecker product K:

p— 1 % . Cmin Tmin
Omin (K) > () det (K) min ( , > : K € RP*P p = m(n—m),
p [ Iy
(26)



where n is the dimension of the original matrix, m is the dimension of the current
Jordan block, ¢; is the 2-norm of the j™ column of K and r; the 2-norm of the
§™ row (with corresponding minima c,in, T'min)-

Let us first look at the case of matrices with all eigenvalues having algebraic
multiplicity of 1 (we’ll use the apex i to indicate a partition of U relating to the
it" Jordan block). In this case U%, = \; and, since K' is an upper triangular

matrix and its determinant is therefore the product of its diagonal entries,

det(K') = [T (A = 2).
i#£]
We also note that

g 12 - ;112
doa =K A Yo=K
1 1

Using the arithmetic and geometric mean inequality [35] we have

P 1 z - P 1 z -

3 K3
[[e < <) 1K A [ < () KI5,
j=1 p j=1 p

where || K|, = U, — AT, < U — A,

Finally, given that for any matrix U’il we can select any permutation of U§2
such that the first element of K* is min;¢;(\; — A;) and given that K* is upper
triangular, this means that ¢y, = ming£;(Aj — i) < Fimin.

Going back to Equation (26), we have:

—1

P—1>p2 Hi;éj (A — )
p H =
(1) 1w —xrpg

Ormin () > (

This term neither depends on the calculation of K, nor on the ordering of U.
In the case of a matrix U with algebraic multiplicity strictly greater than one,
we should remark that the matrix K has dimension m(n —m). Its determinant is

det (K%)= | [] (0 = M)
i#j
and its norm is
K (ly < ml|Uby = X[y + (n —m) Uy = Mil|ly < nl|U = NI |y,

therefore

Tmin(K*) > <

n

27 (U = ATy

n

m
n—1 e (Hi;ﬁj ()‘j - /\1)>
" (
Replacing for (25) and using interval arithmetic we get Equation (24). The last
part of the equation comes from the need for the cosine to be positive. In practice
we want a much smaller number, so if 6; is too large, then we can report that
the result is imprecise and require the use of higher precision. a



Error Bounds for unknown Jordan Shapes As stated earlier, the preceding
discussion relies on having selected the correct Jordan shape in the first place
(that is, the Jordan shape for the theoretical decomposition without calculation
errors), which is in most cases unverifiable. This means that our solution thus far
can only be fully sound for diagonalisable matrices (i.e., if the separation of the
eigenvalues is larger than the error) or those where the Jordan shape is known
a-priori. We therefore propose an additional mechanism to deal with the case of
non-diagonalisable matrices with unknown Jordan shapes. In the following, the
1.--1
symbol 1 = | : -. | represents a appropriately-sized matrix with elements all

1.--1
equal to one.

Aoaa—1

Theorem 3. Given a numerical decomposition of A, A=SJS , the interval
matrix

. n a1 A Ak . N . .
Ny =838 3 =T +((1T], +[e)* = I7]1}) and §' = S(I +[e]1) (27)
where [e] = [—e €] and e = max(n, ||:I||)HS’_1AS'— J||,, is an overapprozimation
of A*.
Proof. Let

S'AS=J+J. o A=8J+J)8 ",

where J, = S _IAS' — J is an error matrix computed from the known quantities
on the RHS of the equation. Then

AR = (T +J)RE (28)
Let [¢'] = [—||Jelly || Tell;]) and e = [¢/]1, then J. C J’..

Since each element of J', is [¢/], each element in J'¥ will be n*~1[¢/]F =
(nl|Jell,)*~1[e’], therefore J’l; = (n||Jcll,)*1[JL]. Similarly, J’eij’e C || Jelly
1T)7 e )

Let [e] = max(n, | J[|,)[e']AJe = [e]1, so that (n]|Jc[l,)* e S ([e])* ! [T]A
| Tell 1] e C [e]dc. More generally any matrix multiplication with ¢ elements
J and j elements J’. may be overapproximated by [e]j_1||:]|\i\]’e - [e]ﬂ\.ﬂ\il
From the above properties we expand (28) replacing for these values and obtain:

k—1
aes(ity (Hua) s )

i=0

k
arcs (S (M) e 57
1
1=0
-1

= A*C 5 (I (T, + e - 1T1)1) §

=AM C ST +30) (3" + (11l + D = 1T1D) &



O

Notice that, since the formula depends on the horizon k, we cannot in general
prove soundness for an unbounded time horizon in this case. In the instance of
converging models (as is often the case for industrial systems), we may pick a k
that practically reaches a fix point in finite time, thus extending the proof for an
infinite time horizon.

5.3 Interval Simplex

The key implementation required for the Algorithm (step 10 in Algorithm 1) is
a variant of simplex that can handle interval representations. We first remark
that throughout this paper we are looking at over-approximations of desired
quantities in order to ensure soundness, and to optimise algorithmic performance.
Let us begin by exploring the meaning of a polyhedral description using interval
inequalities. An interval polyhedron [P] = {x : Az < b} is a union of polyhedra
such that

[Pl=|JPi:Pi={x: A <b} A cANb, €D, (30)
Note that [P] is not guaranteed to be convex even if all P; are. We begin by
simplifying this description.
Theorem 4. The polyhedron

Pi:{;c:AiazSB/\AieA/\szg}, (31)

where b7 is the ™ row of b and b = sup(b?), is a sound over-approzimation of
P;.

Proof. Let r{ be arow in A; with pp, (rf ) = bf its corresponding support function.
Equations (30) and (31) state that

xec P eV rla<b A xzcP oV rgazgi)j. (32)
Since Vi, b{ §§/\§: l;j, we have that
x € P, = Vj, T{a:ﬁi)jéa:ef:’iéﬂgpi. (33)

The above equation shows that P is an over-approximation of the polyhedron P;
obtained by relaxing the support functions to the upper limit of their intervals.
O

Using Theorem 4, we reduce the description of the Abstract Polyhedron to
[Pl =UP.

The standard (non-interval) simplex algorithm visits a sequence of contiguous
vertices p!’ € P; and computes the support function of the last point p!" in this
sequence in the direction of the objective function v (i.e., v - pI*). Hence, to
develop an interval simplex we need to describe the vertices of [P] in a way that
can be traversed and yields a solution [v] - p™.



Definition 4. An extreme point of a polyhedron P is any point in the polyhedron
touching at least one of its faces. Let AY be a subset of rows of A; with b a

subset of the corresponding rows in b and AZ-/p A B/p their complementary rows
and vector elements, respectively. An extreme point Pt is defined by the equation:
A o /pa /P
AP =b N APPY < b (34)
Definition 5. A vertex of a polyhedron P is an extreme point in the polyhedron
touching as many faces as the dimension of the polyhedron, namely

. 2D . o/p L
APRP =" A AP < BT pP e R A |p| = n. (35)
where |p| represents the number of rows in AL.

Definition 6. An abstract vertex pP € [P] is a hyperbox containing a correspond-
ing vertex for each polyhedron in the collection P € P, so that p? 2 Conv (U; pY).
In the following we will replace the index p representing the basis of the vertex
with the index k representing the order in which vertices are visited. For a visual

representation, see Figure 1, where each set of halfplanes rg:r < b (sets of lines
marked j = 1,2,3 where each line represents the index i) intesects with another
at an abstract vertex p? (boxes). We can find multiple intersections inside each
boz corresponding to pr.

Definition 7. A basis B € R"*" is a set of independent vectors, the linear
combination of which spans the space R™.

Theorem 5. Given a pivot operation pv (pf,pf“) : pf — pf“, an abstract
pivot is a transformation

po (pF,p"*Y) : Vi, pf € pf — pit € pht. (36)

Notice that the pivot can be performed on any point, thus it is not limited to
vertices or points within the polyhedron (this allows our abstract pivot to take
effect on all points in the hyperboz of the abstract vertex).

Proof. Let Bf be a basis for P; related to point p¥, and such that
A;p} + Bj's} =b, (37)
k

~1
change the basis such that B¥! = (Ek) BY. We therefore have

where s is a set of auxiliary variables [4]. The pivot operation pv (pf, pf“) will
-1
A;pt + BYst = Ajphtt 4 BFTLsHT = Aph Tt 4 (Ek) BlFstT1(38)

-1
=Blst = A; (pf*! —pt) + (E*)  Blsi*

i



The reason for using the inverse of E" in the last equation is because implemen-
tations of the simplex often work on the inverse of the basis and the formula is
not commutative using interval arithmetic. Since E* creates a change between
two bases spanning the same space, it is invertible.

Let B* D |, BY be an overapproximation of the basis related to p¥ € [P]
(i.e. the set of bases relating to each point in p*). An abstract pivot preserves
the over-approximation of the bases in equations (36) and (38) since:

vk, 3EF O | EF:BM = (EF) B 2 | BEYL (39)

Applying interval arithmetic to equation (38) and moving A to the right, we
obtain:

(Ek)*l BFsk+1 5 A (pk _ pk+1> + Bkgk (40)
=Vi, (E)' Bisit D A, (pf —pit!) + Blsh.

Equations (39) and (40) are satisfiable if we pick large enough intervals for the
elements of EF, thus proving the theorem. a

A new problem arises regarding precision: whereas before we had disjoint
vertices p* # p*T!, we now have possible intersections p* N p¥*+1 # @. There are
three consequences.

First, the over-approximation may become highly imprecise. Second, the
algorithm may start cycling between the two intersecting vertices, which may
cause the program to not terminate. While imprecision has been defined in
Equation (16), the question is how to show completeness. We consider the
definition of the vertices and Equation (18). If Ap* is imprecise, then the base
B* is incomplete, and we abort the simplex, indicating that higher precision is
required.

The third effect is that the corresponding confusion between two bases may
cause the simplex to pivot erroneously on the second basis (i.e., once a vertex
p¥*! is reached, the next pivot may start from p/ : p/ N p*™! £ @ where Ji :
A;p! + BF1s1 £ b). Therefore, before we pick a pivot, we must check that the
current Abstract Basis matches the current Abstract Vertex: Ap* + B¥sk — b = 0
(see Equation (18)). As with the other two cases, a failed check can be addressed
by increasing the precision of the numerical algorithm. If the precision is not
allowed to be increased indefinitely (i.e., it has a limit), then the procedure is
not complete, since a number of problems (depending on the actual value of the
precision) will not terminate with a valid result due to imprecision.

The final stage of the simplex, which corresponds to finding the support
function max(v - p¥) is trivially sound since it is the maximum of the resulting
interval. Note that as stated at the beginning of this section, this is an over-
approximation of the support function, given that p* is an over-approximation
in itself.



Fig. 1. Three interval half-planes with negative (dashed red), zero (thick green) and
positive (thin blue) angular error representations. The yellow and orange areas (hyper-
cubes) over-approximate all possible vertices of the resulting polyhedron at the given
location. If these hypercubes partially intersect, the abstract vertex p* must necessarily
contain all intersecting hypercubes.

5.4 Vertex Enumeration

Vertex enumeration (step 9 in Algorithm 1) is an algorithm similar to simplex
since it operates on the idea of visiting each vertex once in order to enumerate
them.

The standard (non-interval) vertex enumeration algorithm starts by finding
a base VX which contains a number of vertices of the polyhedron. The index
K is a set indicating the state of the algorithm by enumerating the rows of A
that have been evaluated thus far. The process starts by pivoting over a number
of different rows in A (using a simplex algorithm) and by selecting the feasible
points visited, which are known to be vertices of the polyhedron. For this stage of
the algorithm in the interval case, the use of a simplex as described in Section 5.3
ensures overall soundness. The base V¥ is then iteratively expanded to y i+ by
exploring the ;' row of A (denoted 7). The corresponding pairs (AKFI K+
are constructed using the information from (A, V) as follows:

Theorem 6. Let

AKX e RiExP A gl ¢ RIP A VE ¢ RpXME

where p is the dimension of the polyhedron, ny the number of elements in the
set K and my the number of vertices found up until stage K.

H;"={x:rx >0}, H;”={z:r’z<0}, H={z:r7z =0} (41)



be the spaces outside inside and on the j™ hyperplane with respect to the polyhe-
dron. and

vit = {ptevFinm )
VET = {p— e VK mHj—}
vE® = {po evEn Hjo} (42)

the existing vertex candidates lying in each of these spaces.
New vertex candidates are found as a linear combination of existing ones given a
previously unused known constraint 7 :

VER = vEU{(rpf)pp — (PpL )bl k€[l mAK €[l mg]}. (43)

where my and m; are the number of vertices in VX~ and yET respectively,
P, and p; are points contained in the sets, and rJ is the selected row of A to be
added to AK.

For the proof see [14].
Let us now consider the interval arithmetic equivalent of this theorem. Interval
arithmetic ensures the soundness of the calculation

Prr € VK+j = (rjp;) pl;/ - (rjp;’) pz’

so all we need to ensure is the inclusions in (42).
If we expand for one of the sets, we get

[VEY = {p+ e VRN [H;": [Hj]T = {x: rix> 0}}

where the inclusion in [H;]* becomes the concern, namely because using interval
arithmetic we may find points that are either partially included (i.e., a portion
of the interval, but not all of it, belongs to the set). Once again, we find that
equation (18) ensures both the separation of the sets and the correctness of the
inclusions.

Theorem 7. Given the separation criteria in equation (18), the sets [VE]*,
[VE]~ and [VE]O are disjoint.

Proof. The proof is direct from the definitions. Any point that may intersect
more than one set will be marked as imprecise by (18). O

As with the interval simplex, the algorithm is sound but may be incomplete.
Since there always exists a precision that implies a sufficiently small rounding
error (given that the error decreases monotonically with increasing precision),
completeness can be achieved by increasing precision at a higher processing time
cost.



[Benchmark [ Dimension Unsound (Id) Unsound (mp) Sound (mpi) exact]

Building 48 18s 185s 558s t.o.
issr10 10 2s™ 23s 41s t.o.
Convoy Car 3 6 0.3s 1.3s 3.6s 24.6s
Convoy Car 2 3 13ms 33ms 73ms 5.46s
Parabola 4 12ms 12ms 47ms 2.5s

Table 1. Axelerator: time performance on various benchmarks. Dimension is the number
of variables in the problem; 1d denotes long double precision; mp is the required precision
for the algorithm using non-interval arithmetic; mpi is the sound algorithm; exact is
the sound algorithm run using exact arithmetic; t.o. denotes timeout. * returns invalid
data (nan)

6 Experimental Results

The results discussed in the previous sections have been implemented in the tool
Axelerator using eigen [17] for algebraic operations and boost [34] to manage
intervals. Interval comparisons are implemented independently to follow our
choice of ordering. The tool has been tested in a number of benchmarks (available
with the tool) to determine the nature of the numerical errors. The benchmarks
have been first run using unsound standard long double precision and multiple
precision arithmetic with the required precision for the problem to be solved
correctly (i.e., the precision demanded by our sound algorithm). The results are
presented in Table 1.

It can be seen from the results that the cost of using sound arithmetic is
approximately 3 times that of using floating points of the same precision. The
bigger cost for larger dimensional models is the requirement to use a higher pre-
cision arithmetic. This happens because the intervals grow constantly (whereas
regular floating point errors often cancel themselves out resulting in a smaller
overall error), and the model requires the higher precision to maintain a represen-
tative model. Accepting larger errors however can result in both too conservative
results and cycling in the simplex (which results in non-termination), so we must
accept this need for the algorithm to work. The cost of using an exact arithmetic
simplex to evaluate an interval Tableau is combinatorial, hence for example, a
10-dimensional Tableau would require 2' operations which is clearly worse than
any time increase required in this paper. The alternative, which is also requiring
exact arithmetic in the eigen-decomposition, can be very costly (see last column
in table 1). Thus, our algorithm offers a good tradeoff between fast unsound
algorithms and slow exact ones.

7 Conclusion

We have developed a numerical multiple precision floating point interval algorithm
for abstract acceleration. The results have shown that the round-of errors are
relatively negligible for a large number of classes for a given precision. We have



also demonstrated that the use of sound intervals comes at a relatively low
processing cost of around 3x for the case of low precision systems (i.e., when the
initially supplied precision suffices to ensure soundness), and a linear increase
in cost with respect to precision when higher precision is required. Future work
would include the use of variable precision arithmetic that would allow us to
increase the precision only at the desired steps, eg when abstract vertices intersect.
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