
Approximating Predicate Images for Bit-Vector Logic�

Daniel Kroening1 and Natasha Sharygina2

1 Computer Systems Institute, ETH Zürich
2 University of Lugano, Switzerland

Abstract. Predicate abstraction refinement is a successful technique for verify-
ing large ANSI-C programs. However, computing the image of the predicates
with respect to the transition relation is computationally expensive. Recent re-
sults have shown that predicate images can be computed by transforming a proof
of a formula over integers into a Boolean formula that is satisfiable if and only if
the original formula is satisfiable. However, the existing algorithms compute the
closure of the proof rules that are used to axiomatize the logic, and thus, rely on
the fact that the set of axioms is small. They are therefore limited to logics of low
complexity, such as difference logic.

We describe a proof-based algorithm that computes an over-approximation of
the predicate image but in turn allows a rich set of axioms. The algorithm can
be used to compute images of predicates using a combination of bit-vector logic,
the theory of arrays, and pointer arithmetic. The proof-based approach can also
be used to refine the image. We quantify the performance of the algorithm in
comparison with a Das/Dill-like greedy incremental refinement of the image and
a proof-based incremental refinement.

1 Introduction

In the hardware industry, formal verification is well established. Introduced in 1981,
Model Checking [1, 2] is one of the most commonly used formal verification techniques
in a commercial setting. However, it suffers from the state-space explosion problem. In
case of BDD-based symbolic model checking this problem manifests itself in the form
of unmanageably large BDDs [3].

A principal method for addressing the state-space explosion problem is abstraction.
Abstraction techniques reduce the state space by mapping the set of states of the actual,
concrete system to an abstract, and smaller, set of states in a way that preserves the
relevant behaviors of the system.

Predicate abstraction [4, 5] is one of the most popular and widely applied meth-
ods for systematic abstraction of programs. It abstracts data by only keeping track of
certain predicates on the data. Each predicate is represented by a Boolean variable in
the abstract program, while the original data variables are eliminated. Verification of
a software system with predicate abstraction consists of constructing and evaluating a
finite-state system that is an abstraction of the original system with respect to a set of
predicates.

� Ideas of this paper first appeared as a position paper at “Verified Software: Theories, Tools, Ex-
periments”, an international conference of Working Group 2.3 (Programming Methodology)
of the International Federation for Information Processing.

H. Hermanns and J. Palsberg (Eds.): TACAS 2006, LNCS 3920, pp. 242–256, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Approximating Predicate Images for Bit-Vector Logic 243

The abstraction refinement process using predicate abstraction has been promoted by
the success of the SLAM [6, 7, 8, 9, 10, 11, 12] project at Microsoft Research. One starts
with a coarse abstraction of the program. If the property holds on the abstract model,
we can conclude that the property holds on the original model as well. If the abstract
model contains an error trace, the algorithm attempts to simulate this error trace on the
original model. If this succeeds, the error trace is reported to the user.

If it is found that the error-trace reported by the model checker is not realistic, the
error trace is used to refine the abstract program, and the process proceeds until no
spurious error traces can be found or the simulation succeeds. The actual steps of the
loop follow the abstract-verify-refine paradigm [13] and depend on the abstraction and
refinement techniques used [14].

A main task of the refinement loop is to compute an abstract model M̂ from the
concrete model M given a set of n predicates Π = {π1, . . . , πn}. An abstract state x̂ is
a valuation of the n predicates. Most algorithms that aim at verifying safety properties
compute an existential abstraction [15], i.e., any concrete transition in M has a cor-
responding abstract transition in the transition relation R̂ of M̂ . Formally, the abstract
transition relation R̂ is the image of the current state vector x̂ and next state vector x̂′

under the concrete transition relation R of M .
Computationally, this corresponds to an existential quantification of the concrete

state vectors x and x′. This computation, if done in a precise manner, is very expensive
and typically exponential in the number of predicates n. All existing tools, with the
exception of MAGIC, therefore compute over-approximations R̂′ ⊇ R̂. Computing
such an over-approximation can be substantially faster than computing the exact image.
This is a safe and sound technique if the goal is to show safety properties, as any safety
property that holds on M̂ also holds on M .

However, the over-approximation in M̂ may result in additional spurious counterex-
amples, which are costly to eliminate. There therefore exists a trade-off between the
cost of computing the initial abstraction and the cost related to successive refinements.
A wide range of options exists between the two extremes of a) computing the precise
image and b) using R̂′(x̂, x̂′) = true as initial abstraction.

Most existing approaches that compute or refine predicate images are based on deci-
sion procedures for the respective logic. In contrast to that, the authors of [16] generate
a generic proof that the transition x̂, x̂′ does not exist. They then extract a Boolean
formula from the proof steps. This formula is satisfiable if and only if the transition
from x̂ to x̂′ exists in the concrete model. This Boolean formula is then used as the ab-
stract transition relation. For equality and difference logic, the approach is shown to be
polynomial instead of exponential. Results on a more expressive logic, e.g., full linear
arithmetic, are not reported.

Most program analysis tools use theories for arithmetic over unbounded integers or
even the reals to reason about the program variables. As motivated in [17], these theo-
ries are a poor fit for program analysis, especially when applied to low-level software.
Programs in languages such as Java, C or C++ require reasoning for bounded-width
bit-vector arithmetic that takes overflow into account, and allows bit-wise operators.

We proposed the use of propositional SAT-solvers as a reasoning engine for the ver-
ification of low-level software in [18]. The astonishing progress SAT solvers made in

244 D. Kroening and N. Sharygina

the past few years is the enabling technology for this approach. As in Bounded Model
Checking (BMC), the arithmetic operators in the formula are replaced by correspond-
ing circuits. The resulting net-list is converted into CNF and passed to a propositional
SAT solver. This allows supporting all operators as defined in the ANSI-C standard.

We report experimental results that quantify the impact of replacing ZAPATO, a de-
cision procedure for integers, with Cogent, a decision procedure built using a SAT
solver [17]: The increased precision of Cogent improves the performance of SLAM,
while the support for bit-level operators resulted in the discovery of a previously un-
known bug in a Windows device driver.

The disadvantage of such a bit-level representation of arithmetic operators is that
the variables are split into individual bits and the word-level information is lost. For
example, encoding an addition in propositional logic results in one XOR per bit, which
are chained together through the carry bit. It is known that such XOR chains can result
in very hard SAT instances. As a result, there are many programs (and circuits) that
cannot be verified by means of a bit-level SAT solver. This is a justification for using
a solver for linear arithmetic for program verification, as the reasoning is done at the
word-level, and not at the bit-level.

Contribution. This paper makes two contributions.

1. We present a word-level algorithm for approximating predicate images in bit-vector
logic. The algorithm is based on the approach in [16]. In contrast to [16], we com-
pute an over-approximation instead of the precise image. This allows us to support
a rich logic, as the size of the formula that is generated no longer explodes as
the number of proof rules grows. The implementation reported in [16] is limited
to difference predicates. In contrast to that we implement combined theories for
bit-vector-, array-, and pointer-logic, including non-linear arithmetic. In contrast
to [16], we also support transition relations with a non-trivial propositional struc-
ture.

2. The Boolean formulas obtained from proof trees contain fresh Boolean variables.
These variables have to be quantified in order to obtain a formula over the predi-
cates. The implementation reported in [16] is enumerating the cubes of a BDD for
this task, whereas we are integrating this step into the model checker used for the
abstract model.

We present experimental results on software model checking benchmarks that show
that the new algorithm outperforms a predicate abstraction refinement loop that uses
proof-based refinement of transitions.

Related Work. Abstract interpretation [19] is a very general framework to reason about
transition systems. ASTRÉE implements static program analysis [20] using abstract
interpretation and widening. It automatically refines abstractions of programs in order
to prove the specification. However, if the proof fails, no simulation step is attempted,
and thus, the algorithm may generate false alarms.

MAGIC [21] implements predicate abstraction and computes the exact image. The
individual transitions x̂, x̂′ are enumerated and checked individually using Simplify
[22]. Lahiri et al. [23] use SAT-based existential quantification taken from [18] to

Approximating Predicate Images for Bit-Vector Logic 245

compute the exact image. The quantification is performed over reductions from linear
arithmetic over integers to propositional logic computed using UCLID.

In the SLAM framework, the abstract model is computed by the C2BP compo-
nent [7]. It enumerates Boolean combinations of a bounded number of current state
predicates in order to infer constraints on the next state. C2BP has been replaced by
FASTABS, which computes faster, but also more coarse abstractions. In order to ad-
dress the spurious traces introduced this way, SLAM uses a component called CON-
STRAIN [9]. CONSTRAIN uses the decision procedure ZAPATO [24] in order to decide
if a given abstract transition is spurious or not. ZAPATO implements a fragment of linear
arithmetic over integers.

A completely demand-driven way of constructing M̂ was proposed by Das and
Dill [25]: starting with no restrictions on abstract transitions, the spurious abstract tran-
sitions are removed following the counterexamples produced by the model checker.
A similar approach is implemented in BLAST [26]: initially, BLAST computes an ab-
straction based on the Cartesian product, which is refined subsequently. This refinement
is done using Craig interpolants in the current version of BLAST [27].

The first efficient proof-based reduction from integer and real valued linear arith-
metic to propositional logic was introduced by Strichman [28]. The proof is generated
using Fourier-Motzkin variable elimination for the reals and the Omega test for the in-
tegers. These algorithms come with various heuristics to guide the proof, a fact which
promises more compact proofs.

Decision procedures for bit-vector arithmetic have been found in tools such as SVC
and ICS for years. ICS uses BDDs in order to represent the arithmetic operators,
whereas SVC is based on a computation of a canonizer and a solver [29]. SVC has been
superseded by CVC, and then CVC-Lite [30], which uses a propositional SAT-solver to
decide satisfiability of a circuit-based translation of the bit-vector formula.

The related work on bit-vector decision procedures is mostly in the hardware ver-
ification domain. Wedler et al. normalize bit-vector formulas in order to simplify the
generated SAT instance in [31]. Word-level reasoning using a decision procedure such
as the Omega test or the like is typically not employed. One exception is Brinkmann and
Drechsler [32], who use an encoding of linear bit-vector arithmetic into ILP in order to
decide properties of circuit data-paths given at the RT-level. The Omega test is used as a
decision procedure for the ILP instance. However, [32] only aims at the data-paths, and
thus, does not allow a Boolean part within the original formula. This is mended by [33]
using a lazy encoding with a modified DPLL search.

Outline. In Section 2, we provide background information about lazy and eager en-
codings of decision problems. We describe how to use proof encodings as over-appro-
ximations of abstractions in Section 3. Experimental results are reported in Section 4.

2 Background

2.1 Bit-Vector Arithmetic

The subset of bit-vector arithmetic we consider is defined by the language LB according
to the following grammar:

246 D. Kroening and N. Sharygina

formula : formula ∨ formula | formula ∧ formula | ¬formula | atom
atom : term rel term | Boolean-Identifier

rel : = | �= | ≤ | ≥ | < | >

term : term op term | identifier | ∼ term | constant | atom?term:term
op : ⊕ | 	 | ⊗ | � | << | >> | & | | | ˆ

With each expression, we associate a type. The type is the width of the expression in
bits and whether it is signed (two’s complement encoding) or unsigned (binary encod-
ing). Assigning semantics to this language is straight-forward, e.g., as done in [32].

We do not consider bit-extraction and concatenation operators, as they are not of-
fered by ANSI-C. However, adding these operators as part of the bit-wise operators is a
simple extension. We use the ANSI-C symbols to denote the bit-wise operators, e.g., &
denotes bit-wise AND, while ˆ denotes bit-wise XOR. The trinary operator c?a:b is a
case-split: the operator evaluates to a if c holds, and to b otherwise.

We use ⊕ to distinguish addition on bit-vectors with modular arithmetic from ad-
dition on unbounded integers. Note that the relational operators >, <, ≤, ≥, the mul-
tiplicative operators ⊗, � and the right-shift operator depend on whether an unsigned,
binary encoding or a two’s complement encoding is used. We assume that the type of
the expression is clear from the context.

Following the notation in [32], we add an index to the operator and operands in order
to denote the bit-width. As an example, a[32]⊗[32] b[32] denotes the 32-bit multiplication
of a and b. Both the result and the operands are 32 bits wide, the remaining 32 bits of
the result are discarded.

Example 1. As a motivating example, the following formula obviously holds on the
integers:

(x − y > 0) ⇐⇒ (x > y) (1)

However, if x and y are interpreted as bit-vectors, this equivalence no longer holds,
due to possible overflow on the subtraction operation.

Definition 1. Let φB denote a formula. The set of all atoms in φB that are not Boolean
identifiers is denoted by A(φB). The i-th distinct atom in φB is denoted by Ai(φB).
The Propositional Skeleton φsk of a bit-vector formula φB is obtained by replacing all
atoms a ∈ A(φB) by fresh Boolean identifiers e1, . . . , eν , where ν = |A(φB)|.

As an example, the propositional skeleton of φB = (x = y) ∧ ((a ⊕ b = c) ∨ (x �= y))
is e1 ∧ (e2 ∨ ¬e1), and A(φB) = {x = y, a ⊕ b = c}.

We denote the vector of the variables E = {e1, . . . , eν} by e. Furthermore, let
ψ(a, p) denote the atom a with polarity p:

ψ(a, p) :=
{

a : p
¬a : otherwise

. (2)

2.2 Encoding Decision Problems into Propositional Logic

Lazy vs. Eager Encodings. There are two basic ways to compute an encoding of a
decision problem φ into propositional logic. In both cases, the propositional part φsk

Approximating Predicate Images for Bit-Vector Logic 247

of the formula is converted into CNF first. Linear-time algorithms for computing CNF
for φsk are well-known [34]. The algorithms differ in how the non-propositional part is
handled.

The vector of variables e : A(φ) −→ {true, false} as defined above denotes a truth
assignment to the atoms in φ. Let ΨA(φ)(e) denote the conjunction of the atoms A(φ)i,
where the atom number i is in the polarity given by ei:

ΨA(φ)(e) :=
ν∧

i=1

ψ(Ai(φ), ei) (3)

An Eager Encoding considers all possible truth assignments e before invoking the
SAT solver, and computes a Boolean constraint φE(e) such that

φE(e) ⇐⇒ ΨA(φ)(e) (4)

The number of cases considered while building φE can often be dramatically re-
duced by exploiting the polarity information of the atoms, i.e., whether Ai(φ) appears
in negated form or without negation in the negation normal form (NNF) of φ. After
computing φE , φE is conjoined with φsk , and passed to a SAT solver. A prominent
example of a decision procedure implemented using an eager encoding is UCLID [35].

A Lazy Encoding means that a series of encodings φ1
L, φ2

L and so on with φ =⇒
φi

L is built. Most tools implementing a lazy encoding start off with φ1
L = φsk . In

each iteration, φi
L is passed to the SAT solver. If the SAT solver determines φi

L to be
unsatisfiable, so is φ. If the SAT solver determines φi

L to be satisfiable, it also provides
a satisfying assignment, and thus, an assignment ei to A(φ).

The algorithm proceeds by checking if ΨAφ(ei) is satisfiable. If so, φ is satisfiable,
and the algorithm terminates. If not so, a subset of the atoms A′ ⊆ A(φ) is determined
that is already unsatisfiable under ei. The algorithm builds a blocking clause b, which
prohibits this truth assignment to A′. The next encoding φi+1

L is φi
L ∧ b. Since the

formula becomes only stronger, the algorithm can be tightly integrated into one SAT-
solver run, which preserves the learning done in prior iterations.

Among many others, CVC-Lite [30] implements a lazy encoding of integer lin-
ear arithmetic. The decision problem for the conjunction ΨAφ(ei) is solved using the
Omega test.

2.3 Encodings from Proofs

A proof is a sequence of transformations of facts. The transformations follow specific
rules, i.e., proof rules, which are usually derived from an axiomatization of the logic at
hand. A proof of a formula φ in a particular logic can be used to obtain another formula
φP in propositional logic that is valid if and only if the original formula is valid, i.e.,
φ ⇐⇒ φP . Let F denote the set of facts used in the proof.

Given a proof of φ, a propositional encoding of φ can be obtained as follows:

1. Assign a fresh propositional variable vf to each fact f ∈ F that occurs anywhere
in the proof.

248 D. Kroening and N. Sharygina

2. For each proof step i, generate a constraint ci that captures the dependencies be-
tween the facts. As an example, the derivation

A, B

C

with variables vA, vB, vC for the facts A, B, and C generates the constraint (vA ∧
vB) −→ vC .

3. The formula φP is obtained by conjoining the constraints:

φP :=
∧
i

ci

However, the generation of such a proof is often difficult to begin with. In particular,
it often suffers from a blowup due to case-splitting caused by the Boolean structure
present in φ. This is addressed by a technique introduced by Strichman in [28]. His
paper describes an eager encoding of linear arithmetic on both real numbers and integers
into propositional logic using the Fourier-Motzkin transformation for the reals and the
Omega-Test [36] for the integers. The idea of [28] is applicable to any proof-generating
decision-procedure:

– All atoms A(φ) are passed to the prover completely disregarding the Boolean struc-
ture of φ.

– For facts f that are also atoms assign vf := ef .
– The prover must be modified to obtain all possible proofs, i.e., must not terminate

even if the empty clause is resolved.

Since the formula that is passed to the prover does not contain any propositional
structure, obtaining a proof is considerably simplified. The formula φP obtained from
the proof as described above is then conjoined with the propositional skeleton φsk . The
conjunction of both is equi-satisfiable with φ. As φP ∧ φsk is purely propositional, it
can be solved by an efficient propositional SAT-solver.

3 Computing Predicate Images

3.1 Existential Abstraction

Let S denote the set of concrete states, and R(x, x′) denote the concrete transition
relation. As an example, consider the basic block

i++;
j=i;

We use x.v to denote the value of the variable v in state x. The transition relation
corresponding to this basic block is then x′.i = x.i + 1 ∧ x′.j = x′.i.

Let Π = {π1, . . . , πn} denote the set of predicates. The abstraction function α(x)
maps a concrete state x ∈ S to an abstract state x̂ ∈ {true, false}n:

α(x) := (π1(x), . . . , πn(x))

Approximating Predicate Images for Bit-Vector Logic 249

Definition 2 (Abstract Transition Relation). The abstract model can make a transi-
tion from an abstract state x̂ to x̂′ iff there is a transition from x to x′ in the concrete
model and x is abstracted to x̂ and x′ is abstracted to x̂′. We denote abstract transition
relation by R̂:

R̂ := {(x̂, x̂′) | ∃x, x′ ∈ S : R(x, x′) ∧ α(x) = x̂ ∧ α(x′) = x̂′}

R̂ is also called the image of the predicates Π over R. In [23], R̂ is computed following
the definition above by means of SAT or BDD-based quantification. Due to the quan-
tification over the concrete states this corresponds to an all-SAT instance. Solving such
instances is usually exponential in n.

3.2 Predicate Images from Proofs

As an alternative, R̂ can be computed using a generic proof of validity of the following
formula:

R(x, x′) ∧ α(x) = x̂ ∧ α(x′) = x̂′

Within this formula, only R contains propositional operators, as the predicates in
α are assumed to be atomic. The computation of φsk therefore only has to take the
propositional structure of R into account. In case of software, the propositional structure
of R is typically trivial, as the abstraction is performed for each basic block separately.
Thus, the facts (atoms) given to the prover are:

1. All the predicates evaluated over state x, i.e., πi(x),
2. all the predicates evaluated over state x′, i.e., πi(x′),
3. the atoms in the transition relation R(x, x′).

We then obtain φP as described in section 2.3. Both φP and φsk contain fresh propo-
sitional variables for the atoms A(R) in R, for the predicates Π over x and x′, and for
the facts f ∈ F found during the derivation. Let VR denote the set of propositional
variables corresponding to atoms in R that are not predicates, and let VF denote the set
of propositional variables corresponding to facts f ∈ F that are not predicates.

The propositional variables that do not correspond to predicates are quantified exis-
tentially to obtain the predicate image. Let vR denote the vector of variables in VR, let
vF denote the vector of variables in VF , and let µR = |VR| and µF = |VF | denote the
number of such variables.

R̂ := {(x̂, x̂′) | ∃vR ∈ {0, 1}µR, vF ∈ {0, 1}µF :
φsk(x̂, x̂′, vR) ∧ φP (x̂, x̂′, vF)} (5)

Thus, we replace the existential quantification of concrete program variables
x, x′ ∈ S2 by an existential quantification of µR + µF Boolean variables. The au-
thors of [23, 37] report experiments in which this quantification is actually performed
by means of either BDDs or the SAT-engine of [18].

The authors of [16] use BDDs to obtain all cubes over the variables in VF , and then
enumerate these cubes. This operation is again worst-case exponential. The next two
sections describe how to overcome the limitations of the proof-based predicate image
computation.

250 D. Kroening and N. Sharygina

3.3 Quantification as Part of the Abstract Model

Instead of performing the quantification in equation 5 upfront, we propose to perform
this step inside the model checker for the abstract model. When performing the fixed-
point iteration, a symbolic model checker computes an image of the given transition
relation, and usually contains algorithms that are well optimized for this task. Further-
more, the image only has to be computed with respect to the set of reachable states,
whereas performing the quantification upfront has to consider all possible state pairs
(x̂, x̂′).

It is important to point out that most model checkers for abstract models do not
require modifications for this purpose. As an example, consider the following abstract
transition relation over state variables x, y, and their next-state versions x′ and y′:

∃v1 ∈ {0, 1}.(x′ ⇐⇒ v1) ∧ (v1 ⇐⇒ x ∨ y) ∧ (y′ ⇐⇒ v1) (6)

This abstract transition relation can be translated into a closed form by enumerating
the values of v1, as done in [16]:

(¬x′ ∧ ¬(x ∨ y) ∧ ¬y′)∨
(x′ ∧ (x ∨ y) ∧ y′) (7)

However, if we add v1 as a state variable to the abstract model, we can use the
following equivalent SMV code without having to resort to existential quantification1:

TRANS next(x)=next(v1) &
next(v1)=(x|y) &
next(y)=next(v1)

Integration in Boppo. The addition of state variables comes at an expense. Since these
variables never have direct constraints that relate their current state to their next-state
value, it is not actually necessary to store any representation of their values. BOPPO [38]
is a symbolic model checker for Boolean programs, i.e., abstract models of C programs.
It uses symbolic simulation for checking reachability. We have modified BOPPO to
allow the definition of variables that can be used in constrain clauses, but are not
part of the state vector and are therefore disregarded during the fixed-point detection.
Our experiments indicate that the additional variables do not noticeably increase the
run-time of BOPPO.

3.4 Predicate Images in Bit-Vector Logic

As motivated above, reasoning for integers is a bad fit for system-level software. We
would therefore like a proof-based method for a bit-vector logic. The main challenge
is that any axiomatization for a reasonably rich bit-vector logic permits too many ways
of proving the same fact, as the procedure as described above relies on enumerating all
proofs.

1 We use next(v1) instead of v1 in order to avoid a transition relation that is not total.

Approximating Predicate Images for Bit-Vector Logic 251

Even if great care is taken to obtain a small set of axioms, the number of proofs
is still too large. Furthermore, the proofs include derivations that are based on reason-
ing about single bits of the vectors involved, resulting in a flattening of the formula,
which resembles the circuit-based models used for encodings of bit-vector logic into
propositional logic.

We therefore sacrifice precision in order to be able to reason about bit-vectors, and
compute an over-approximation of R̂. This is a commonly applied technique, e.g., used
by SLAM and BLAST. If this over-approximation results in a spurious transition, it can
be refined by any of the existing refinement methods, e.g., based on UNSAT cores as
in [39] or based on interpolants as in [27].

The over-approximation of R̂ is obtained as follows: Instead of aiming at a minimal-
istic set of axioms, we aim at the richest possible set of axioms. This permits proofs (or
refutations) of facts with very few proof steps. It also allows to support a very rich logic,
which is bit-vector logic including bit-wise shifts, extraction, concatenation, non-linear
arithmetic, the theory of arrays, and pointer logic permitting pointer arithmetic in our
case.

Definition 3. The derivation depth d(f) of a fact f ∈ F is defined recursively as
follows:

– Axioms and the facts given as input have depth zero.
– Any new fact f derived from a set of existing facts f1, . . . , fk has depth d(f) =

max{d(f1), . . . , d(fk)} + 1.

In order to avoid that d(f) depends on the order the facts are derived, we generate the
facts in a BFS manner, i.e., new facts are derived preferably from existing facts with a
low number of derivation steps.

Definition 4. Given a maximum depth δ, a depth-bounded derivation tree is a set of
derivations of facts fi such that d(fi) ≤ δ.

Note that a depth-bounded derivation tree not necessarily constitutes a proof or refuta-
tion of any of the facts that are given as input, as the shortest proof or refutation could
require more than δ steps.

Claim. Let φδ
P denote the formula corresponding to a derivation tree with maximum

depth δ. The formula corresponding to the full unbounded proof tree φP implies φδ
P .

Let R̂δ denote the transition relation obtained by using φδ
P instead of φP . R̂δ is an

over-approximation of R̂, i.e., R̂(x̂, x̂′) −→ R̂δ(x̂, x̂′), and thus, R̂δ is a conservative
abstraction for reachability properties.

Example. Assume we have, among others, the following derivation rules:

(a|b)&b == b
(8) b&c == 0

(a|b)&c == a&c
(9)

The predicates we consider are π1 ⇐⇒ (x&1 = 0) and π2 ⇐⇒ (x&2 = 0), and
the statement to be executed is:

x|=2;

252 D. Kroening and N. Sharygina

⊥

x′&2 = 0 x′ = x|2

(x|2)&2 = 0 (x|2)&2 = 2

Rule 8

F

π′
2 T

v1 T

T

Fig. 1. Derivation of constraints for π′
2

x′ = x|2x′&1 = 0

(x|2)&1 = 0 (x|2)&1 = x&1

Rule 9

x&1 = 0 π1

π′
1 T

v2 T

T

Fig. 2. Derivation of constraints for π′
1

The facts passed to the prover are x&1 = 0, x&2 = 0, x′&1 = 0, x′&2 = 0, and
x′ = x|2. Figure 1 shows a derivation on the left hand side and on the right hand side the
same derivation tree in which the atoms are replaced by their propositional variables.
The derivation results in the constraint (π′

2 −→ v1) ∧ (v1 −→ F), which is equivalent
to ¬π′

2. Figure 2 shows a derivation that ends in an existing atom π1 rather than F. The
constraint generated is equivalent to π′

1 −→ π1.
We collected a set of over 100 (highly redundant) proof rules for bit-vector arith-

metic, pointer arithmetic, and the theory of arrays; we typically limit the depth of the
proofs to 3 derivation steps.

4 Experimental Results

We implemented the proof-based predicate image approximation as described above
in SATABS [40]. SATABS uses an abstraction refinement loop to prove reachability
properties of ANSI-C programs. We make our implementation available to other re-
searchers2 for experimentation. We have three different configurations:

1. The first configuration (“Greedy Ref.”) follows the suggestions by Das/Dill [25]: a
syntactic heuristic is used to compute the initial image. The image is subsequently
refined using a greedy heuristic.

2 http://www.inf.ethz.ch/personal/daniekro/satabs/

Approximating Predicate Images for Bit-Vector Logic 253

Table 1. Summary of results: the column “Max. n” shows the largest number of predicates in
any program location. The columns under “Greedy Ref.” show the number of iterations, the time
spent during refinement, and the total run-time of SATABS using the Greedy heuristic described
in [25]. The columns under “Proof Ref.” show the results using a proof-based refinement. The
columns under “Proof Image+Ref.” show the results using the technique proposed in this paper
in order to obtain the initial predicate image and to refine the image. A star denotes that the one
hour timeout was exceeded.

Greedy Ref. Proof Ref. Proof Image+Ref.
Benchmark Result Max. n It. Ref. Total It. Ref. Total It. Abstr. Ref. Total

B1 T 25 85 � � 180 � � 2 1.3s 0.2s 2.0s
B2 F 11 51 4.8s 5.9s 46 3.5s 5.2s 8 0.1s 0.8s 1.2s
B3 T 7 14 8.4s 9.5s 15 4.8s 5.3s 6 0.1s 1.9s 2.2s
B4 F 21 102 65.2s 70.2s 78 15.1s 20.9s 20 2.1s 13.6s 18.3s

MD2 T 10 62 58.8s 67.9s 50 19.1s 24.7s 14 0.3s 9.2s 11.1s
B5’ F 81 242 � � 241 � � 80 123.1s 843.7s 1112.7s
AP1 F 149 31 � � 154 � � 201 210.8s 1532.2s 2102.8s

2. The second configuration (“Proof Ref.”) replaces the greedy heuristic proposed
in [25] by a proof-based refinement strategy that uses the proof of unsatisfiabil-
ity to refine the transitions.

3. The third configuration (“Proof Image+Ref.”) combines the proof-based refinement
with the word-level proof-based initial abstraction as proposed in this paper.

To the best of our knowledge, a comparison of these image approximation heuristics
on software given in C has not yet been made; Das/Dill [25] use examples from protocol
verification.

For all configurations, we use the modified version of BOPPO [38] as Model
Checker for the abstract model. All configurations use the following simulation phase:
the path generated by model checker is transformed into SSA (static single assignment)
form. The resulting bit-vector formula is translated using a circuit representation and
passed to a propositional SAT-solver. We are using Booleforce3 for our experiments.
We also experimented with ZChaff 2003, but Booleforce outperformed ZChaff on all
benchmarks.

The refinement phase depends on whether the spurious trace is due to predicate im-
age over-approximation or due to a lack of sufficiently strong predicates. This is de-
termined by the simulation phase. If a transition is found to be spurious due to image
over-approximation, the incremental approach described in [25] uses a greedy heuristic
to generalize the transition and refine the abstract transition relation. In contrast to that,
configuration 2) and 3) use the proof of unsatisfiability to generalize the transition.

If the spurious counterexample is due to insufficient predicates, we use weakest pre-
conditions to compute new predicates. The set of new predicates is limited to those
transitions found in the UNSAT core of the SAT instance used for simulation.

The experiments have been performed on an Intel Xenon Processor with a clock fre-
quency of 2.8 GHz running Linux. The results are summarized in table 1. The bench-

3 A recent SAT-solver based on MiniSAT written by A. Biere.

254 D. Kroening and N. Sharygina

marks are C programs that require a moderate to large number of predicates per program
location (the table shows the largest number of predicates required in any program lo-
cation). All benchmarks make use of bit-vector and pointer arithmetic, and arrays. The
benchmark AP1 is an array-bounds property of the Apache httpd server, which makes
heavy use of pointers and pointer arithmetic.

The experiments show that a small additional expense for computing an initial pred-
icate image can reduce the number of iterations required and the time spent for refine-
ment dramatically. The larger the number of predicates, the bigger the benefit of using
an initial abstraction usually is. Due to the depth bound of the proofs, the abstraction
phase never uses an excessive amount of time.

5 Conclusion

This paper shows two things:

1. When extracting predicate images for abstract models, it is not necessary to perform
the existential quantification upfront. It can be performed within the model checker
instead. Potentially expensive methods, such as BDD-based enumeration as in [16],
can be avoided that way.

2. A rich logic, including bit-vector logic, can be supported if we sacrifice some pre-
cision and abort proofs after a small number of steps. The experiments show that
we in many cases still right away obtain an abstract model that is strong enough to
terminate without many refinement iterations, and thus, often as good as a model
computed using the precise image.

Future Work. The algorithm presented here uses the propositional encoding φsk to
handle a complex Boolean structure of the transition relation. The transition relation
of software programs, when partitioned using a program counter construction, usually
only contains very few facts (one per statement of any basic block). As future work,
we plan to experiment with the algorithm using larger transition relations, e.g., those of
circuits given in Verilog.

We also plan to investigate even richer logics, e.g., non-standard logics such as sep-
aration logic [41] in order to reason about dynamic data structures.

Acknowledgment

The authors would like to thank Ofer Strichman for valuable comments, and Armin
Biere for his proof-generating SAT solver Booleforce.

References

1. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)
2. Clarke, E.M., Emerson, E.A.: Synthesis of synchronization skeletons for branching time

temporal logic. In: Logic of Programs: Workshop. Volume 131 of LNCS. Springer (1981)
52–71

Approximating Predicate Images for Bit-Vector Logic 255

3. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model check-
ing: 1020 states and beyond. Information and Computation 98 (1992) 142–170

4. Graf, S., Saı̈di, H.: Construction of abstract state graphs with PVS. In: Computer Aided
Verification (CAV). Volume 1254 of LNCS. Springer (1997) 72–83

5. Colón, M., Uribe, T.: Generating finite-state abstractions of reactive systems using decision
procedures. In: Computer Aided Verification (CAV). Volume 1427 of LNCS. Springer (1998)
293–304

6. Ball, T., Rajamani, S.: Boolean programs: A model and process for software analysis. Tech-
nical Report 2000-14, Microsoft Research (2000)

7. Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic predicate abstraction of
C programs. In: Programming Language Design and Implementation (PLDI), ACM (2001)
203–213

8. Ball, T., Rajamani, S.K.: Generating abstract explanations of spurious counterexamples in C
programs. Technical Report MSR-TR-2002-09, Microsoft Research (2002)

9. Ball, T., Cook, B., Das, S., Rajamani, S.K.: Refining approximations in software predi-
cate abstraction. In: Tools and Algorithms for the Construction and Analysis of Systems
(TACAS). Volume 2988 of LNCS. Springer (2004)

10. Ball, T., Rajamani, S.K.: Bebop: A symbolic model checker for Boolean programs. In: SPIN.
Volume 1885 of LNCS. Springer (2000) 113–130

11. Ball, T., Rajamani, S.K.: Automatically validating temporal safety properties of interfaces.
In: SPIN. Volume 1885 of LNCS. Springer (2000) 113–130

12. Ball, T., Rajamani, S.K.: Bebop: A path-sensitive interprocedural dataflow engine. In: Pro-
ceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop on Program analysis for software
tools and engineering, ACM (2001) 97–103

13. Kurshan, R.: Computer-Aided Verification of Coordinating Processes. Princeton University
Press, Princeton (1995)

14. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction
refinement. In: Computer Aided Verification (CAV). Volume 1855 of LNCS. Springer (2000)
154–169

15. Clarke, E., Grumberg, O., Long, D.: Model checking and abstraction. In: Principles of
Programming Languages (POPL), ACM (1992) 343–354

16. Lahiri, S.K., Ball, T., Cook, B.: Predicate abstraction via symbolic decision procedures. In:
Computer Aided Verification (CAV). Volume 3576 of LNCS., Springer (2005) 24–38

17. Cook, B., Kroening, D., Sharygina, N.: Cogent: Accurate theorem proving for program ver-
ification. In: Computer Aided Verification (CAV). Volume 3576 of LNCS., Springer (2005)

18. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: Predicate abstraction of ANSI–C pro-
grams using SAT. Formal Methods in System Design 25 (2004) 105–127

19. Cousot, P.: Abstract interpretation. Symposium on Models of Programming Languages and
Computation, ACM Computing Surveys 28 (1996) 324–328

20. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.: The
ASTREÉ analyzer. In: European Symposium on Programming (ESOP). Volume 3444 of
LNCS. Springer (2005) 21–30

21. Chaki, S., Clarke, E., Groce, A., Strichman, O.: Predicate abstraction with minimum predi-
cates. In: Correct Hardware Design and Verification Methods (CHARME). Volume 2860 of
LNCS. Springer (2003) 19 – 34

22. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: A theorem prover for program checking. Tech-
nical Report HPL-2003-148, HP Labs (2003)

23. Lahiri, S.K., Bryant, R.E., Cook, B.: A symbolic approach to predicate abstraction. In:
Computer-Aided Verification (CAV). Volume 2725 of LNCS. Springer (2003) 141–153

256 D. Kroening and N. Sharygina

24. Ball, T., Cook, B., Lahiri, S.K., Zhang, L.: Zapato: Automatic theorem proving for predicate
abstraction refinement. In: Computer Aided Verification (CAV). Volume 3114 of LNCS.,
Springer (2004)

25. Das, S., Dill, D.: Successive approximation of abstract transition relations. In: Logic in
Computer Science (LICS). (2001) 51–60

26. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Principles of
programming languages (POPL). (2002) 58–70

27. Henzinger, T., Jhala, R., Majumdar, R., McMillan, K.: Abstractions from proofs. In: Princi-
ples of Programming Languages (POPL), ACM (2004) 232–244

28. Strichman, O.: On solving presburger and linear arithmetic with SAT. In: Formal Methods
in Computer-Aided Design (FMCAD). Volume 2517 of LNCS. Springer (2002) 160–170

29. Barret, C.W., Dill, D.L., Levitt, J.R.: A decision procedure for bit-vector arithmetic. In:
Design Automation Conference (DAC), ACM (1998)

30. Barrett, C., Berezin, S.: CVC Lite: A new implementation of the cooperating validity
checker. In: Computer-Aided Verification. Volume 3114 of LNCS. Springer (2004)

31. Wedler, M., Stoffel, D., Kunz, W.: Normalization at the arithmetic bit level. In: Design
Automation Conference (DAC), ACM (2005) 457–462

32. Brinkmann, R., Drechsler, R.: RTL-datapath verification using integer linear programming.
In: VLSI Design, IEEE (2002) 741–746

33. Parthasarathy, G., Iyer, M.K., Cheng, K.T., Wang, L.C.: An efficient finite-domain con-
straint solver for circuits. In: Design Automation Conference (DAC), ACM (2004)
212–217

34. Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation. Symbolic
Computation 2 (1986) 293–304

35. Bryant, R.E., Lahiri, S.K., Seshia, S.A.: Modeling and verifying systems using a logic of
counter arithmetic with lambda expressions and uninterpreted functions. In: Computer-Aided
Verification. Volume 2404 of LNCS. Springer (2002)

36. Pugh, W.: The Omega test: a fast and practical integer programming algorithm for depen-
dence analysis. Communications of the ACM (1992) 102–114

37. Lahiri, S.K., Bryant, R.E.: Constructing quantified invariants via predicate abstraction. In:
Verification, Model Checking and Abstract Interpretation (VMCAI). Volume 2937 of LNCS.
Springer (2004) 267–281

38. Cook, B., Kroening, D., Sharygina, N.: Symbolic model checking for asynchronous Boolean
programs. In: SPIN. Volume 3639 of LNCS. Springer (2005) 75–90

39. Jain, H., Kroening, D., Sharygina, N., Clarke, E.: Word level predicate abstraction and re-
finement for verifying RTL Verilog. In: Design Automation Conference (DAC), ACM (2005)
445–450

40. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: SATABS: SAT-based predicate abstrac-
tion for ANSI-C. In: Tools and Algorithms for the Construction and Analysis of Systems
(TACAS). Volume 3440 of LNCS. Springer (2005) 570–574

41. Reynolds, J.: Separation logic: A logic for shared mutable data structures. In: Logic in
Computer Science (LICS), IEEE (2002) 55–74

	Introduction
	Background
	Bit-Vector Arithmetic
	Encoding Decision Problems into Propositional Logic
	Encodings from Proofs

	Computing Predicate Images
	Existential Abstraction
	Predicate Images from Proofs
	Quantification as Part of the Abstract Model
	Predicate Images in Bit-Vector Logic

	Experimental Results
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

