
BOOM: Taking Boolean Program
Model Checking One Step Further?

Gerard Basler, Matthew Hague, Daniel Kroening,
C.-H. Luke Ong, Thomas Wahl, and Haoxian Zhao

Oxford University Computing Laboratory, Oxford, United Kingdom

Abstract. We present Boom, an analysis tool for Boolean programs. We
focus in this paper on model-checking non-recursive replicated programs.
Boom implements a recent variant of counter abstraction; efficiency is
achieved using thread counters in a program context-aware way. While
designed for bounded counters, this method also integrates well with the
Karp-Miller tree construction for vector addition systems, resulting in
a reachability engine for Boolean programs with unbounded thread cre-
ation. The concurrent version of Boom is implemented using BDDs and
includes partial order reduction methods. Boom is intended for model
checking system-level code via predicate abstraction. We present exper-
imental results for the verification of Boolean device driver models.

1 Introduction

Over the past decade, predicate abstraction has established itself as a viable
strategy for model checking software, as witnessed by the success of device driver
verification in Microsoft’s Slam project. The input program is converted into a
finite-state Boolean program, whose paths overapproximate the original behavior.

Recently, concurrent software has gained tremendous stimulus due to the
advent of multi-core computing architectures. The software is executed by asyn-
chronous parallel threads, communicating, in the most general case, through
fully shared variables. Bugs in such programming environments are known to
be subtle and hard to detect by means of testing, strongly motivating formal
analysis techniques for concurrent programs.

In this paper, we present Boom, a model checker for Boolean programs.
While Boom has many features that make it useful for sequential programs [4],
we focus here on analyzing the set of reachable states of a replicated non-recursive
Boolean program. Replication often induces symmetry, which can and must be
exploited for the analysis to scale. We present our implementation of a context-
aware form of counter-abstraction [3], and compare its performance to alternative
reduction techniques also implemented in Boom, and to other tools.

? Work supported by the Swiss National Science Foundation (SNF) under grant
200021-109594 and by the Engineering and Physical Sciences Research Council (EP-
SRC) under grant no. EP/G026254/1 and EP/D037085/1.



Replication materializes in practice as dynamic thread creation. Even without
a bound on the number of running threads, the reachability problem for non-
recursive concurrent Boolean programs is decidable. We have extended Boom by
a variant of the Karp-Miller tree, which operates directly on Boolean programs.
We demonstrate that our implementation performs much better in practice than
the worst-case complexity of the construction seems to suggest. The result is a
practically useful and exact reachability analysis for realistic concurrent Boolean
programs with arbitrarily many threads.

2 Concurrent Boolean Program Analysis with BOOM

Boom is capable of analyzing the reachable state space of replicated programs,
where threads may dynamically create other threads during the execution. The
Boolean variables are declared either local or shared. Each thread has its own
private copy of the local variables. The shared variables, in contrast, are fully
accessible to every thread. Shared-variable concurrency is very powerful and able
to simulate many other communication primitives, such as locks.

Concurrent Boolean programs with replicated threads are naturally sym-
metric: the set of transitions of a derived Kripke model is invariant under per-
mutations of the threads. Symmetry is the concurrency-related cause for state
explosion in replicated Boolean programs. Boom tackles this problem using a
form of counter abstraction: global states are represented as vectors of counters,
one per local state. Each counter tracks the number of threads in the corre-
sponding local state. A transition by a thread translates into an update of the
counters for the source (−1) and target (+1) local state.

The idea of using process counters has long proved useful for verifying repli-
cated local-state transition diagrams. Unfortunately, statically converting a con-
current Boolean program into such a diagram suffers from the local state explo-
sion problem: the number of local states is exponential in the program text size.
We recently proposed context-awareness as a solution [3]: at exploration time,
the context in which a statement is executed is known and exposes the local-
state counters that need to be updated. As a natural optimization, a global state
in Boom only keeps counters for local states that at least one thread resides in.
The number of occupied local states is obviously bounded by the number of
running threads, which tends to be a tiny fraction of all local states.

Extending BOOM to Unbounded Thread Creation

If there is no limit to how many threads may be running, the thread counters
become unbounded non-negative integers. The induced transition system is an
instance of a vector addition system with control states (VASS); the control
state represents the values of the shared program variables. The reachability
of a thread state (s, l) (combination of shared and local state) in a concurrent
Boolean program is easily reducible to a VASS coverability problem. The latter
problem is decidable, using a tree construction proposed by Karp and Miller [8].

2



Boom uses the Karp-Miller construction as the starting point for an al-
gorithm to decide thread-state reachability. The local state explosion problem
materializes here as the dimensionality problem for VASS and Petri nets. For-
tunately, our earlier solution of a context-aware, on-the-fly translation carries
over quite seamlessly to the unbounded case. Our implementation can be seen
as a version of the Karp-Miller procedure that operates directly on a Boolean
program. Bypassing the VASS gives us the opportunity to avoid the blowup
that a static translation into any type of addition system invariably entails.
Furthermore, to ameliorate the exponential-space complexity of the Karp-Miller
construction, we exploit the special form of vector-addition systems derived from
Boolean programs. For example, our implementation keeps a copy of those tree
nodes that are maximal with respect to the covering relation as partial order.
Newly discovered nodes are compared against these maximal nodes only.

3 Results

Boom and our benchmarks are available at http://www.cprover.org/boom; we
refer the reader to this website for more details on the tool and the benchmarks.

The left chart below compares a plain symbolic exploration of the concur-
rent Boolean program against Boom’s implementation of (bounded) counter
abstraction. Each data point specifies the numbers of threads running. The mes-
sage of this chart is obvious. The right chart compares plain exploration against
Boom’s implementations of partial-order reduction. Comparing left and right,
we see that counter abstraction performs somewhat better. In other experiments
(not shown), we observed that combining the two gives yet better performance.

0.1

1

10

100

[sec]
1000

0.1 1 10 100 1000 [sec]

S
ym

bo
lic

 B
oo

m

Symbolic Boom with Counter Abstraction

4

5

6

3

4 5

5

6 7 8 9 10

3

4
5 6

2

3

4

5

6 7

5

6 7 8 9

4

5 6

5

6

7 8 9 10 11 12

3

4

5 2

2

3 49 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

3

411 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2829303132333435363738394041424311 12 13 14 15 16 17 18 19 20 21 22 23 24 25 2627 282930313233343536373839404142433031323334353637383940414243444546474849

4

5

6 712 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 2930313233343536373839404142434416 17 18 19 20 2122 232425262728293031323334353637383940414243444546474849

4

5

6 7 8

2

3

2

3

4

7

8 9 10 11 12 13 14 15 16 179 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

4

5 6

2

3

6

7 8 9 10 11 12 138 9 10 11 12 13 14 15 16 17 18 19 20 21 22

4

5 6

2

3

3

4 5

3

4

5

4

5

6 7 8
2

3

3

4

6

7 8 9 10 11 12 13

3

4 59 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

4

5

6 7 8

4

5

6

4

5

6 7 812 13 14 15 16 17 18 19 20 21 22 23 24 25 2627 2829303132333435363738394041424344

3

4

3

4

5

3

4

5

2
3

4

5

6 7 8 9

2

3

6

7 8 9 10 11 12 13

4

5

6 7

4

5

6 7

3

4

2

3

49 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 2914 15 16 17 18 19 20 2122 232425262728293031323334353637383940414243444546474849

6

7 8 9 10 11 12 13

2

3

4

5 6 7

3

4

5

4

5

6 7 816 17 18 19 20 2122232425262728293031323334353637383940414243444546474849

5

6 7 8 9

3

4

2

3

6

7 8 9 10 11 12 13

5

6

7 8 9 10 11 129 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

6

7 8 9 10 11 12 13 14 15

3

5

6 7 8 9

2

3

5

6 7 8 9 10

2
4

5 6

5

6 7 8 9 1028 9 10 11 12 13 14 15 16 17 18 19 20 21 22

5

6

7 8 9 10 11

2

3

4

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

4

5

6 7 8 9

3

3

4

5 6

7

8 9 10 11 12 13 14 15 16 17

3

4

3

4 5

4

5 616 17 18 19 20 2122 232425 262728293031323334353637383940414243444546474849

3

4

5

2

3

16 17 18 19 202122232425262728293031323334353637383940414243444546474849

3

4

3

4

3

4

5 611 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28293031323334353637383940414243

3

4

6

7 8 9 10 11 12 13

3

412 13 14 15 16 17 18 19 20 21 22 23 24 25 2627 2829303132333435363738394041424344

4

5

6 7 89 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

4

5

6 7 8

3

4

5 6

4

5 6 7 8

3

4

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 2912 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2829303132333435363738394041424344

6

7 8 9 10 11 12 138 9 10 11 12 13 14 15 16 17 18 19 20 21 22

2

3

5

6

7 8 9

3

4

5

3

4

4

5

6 7 816 17 18 19 20 21 222324 25262728293031323334353637383940414243444546474849

4

5

6 7 8

5

6 7 8 9

4

5 6

6

7 8 9 10 11 12 13

3

4

5 6

3

412 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2829303132333435363738394041424344

2

3

4

5

6 7 8 9

5

6

7 8 9 10 11

2
3

4

5

6

7 8 9 10 11

5

6

7 8 9 10

3

4

4

5

6 7 8 9

3

4

3

4

5

5

6 7 8 9 10

4

5 6

3

4

5

3

4

7

8 9 10 11 12 13 14 15 16 17 18

3

4 5

5

6

7 8 9 10 11 12

4

5

6 7 8 9

5

6

7 8 9 10

3

4

2 3
4

5

6

7

8 9 10 11 12 13 14 15 16 17 18 19 20 21 2212 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2829303132333435363738394041424344

4

5 69 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 2911 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 272829303132333435363738394041

4

5

6 7 89 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

2

25262728293031323334353637383940414243444546474849

3

4 5

4

5

3

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 2930313233343536373839404142434416 17 18 19 20 21 22232425262728293031323334353637383940414243444546474849

4

5 616 17 18 19 20 2122 232425262728293031323334353637383940414243444546474849 2

27

8 9 10 11 12 13 14 15 16 17 18

6

7 8 9 10 11 1216 17 18 1920 21 22 232425262728293031323334353637383940414243444546474849

3

4

5

6

7 8 9 10 11

7

8 9 10 11 12 13 14 15 16 17 1812 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29303132333435363738394041424344

3

4

3

4

59 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

2

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

3

4

5

6

7 8 9 10 11 12 13 14 158 9 10 11 12 13 14 15 16 17 18 19 20 21 22

3

4

58 9 10 11 12 13 14 15 16 17 18 19 20 219 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

6

7 8 9 10 11 12 13 14 15

4

5

6 7

2

3

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

4

5 6

5

6

7 8 9 10

3

4

5

3

4

5 6

3

4

5

4

5

6 7 8

3

4

5 6

4

5 611 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29303132333435363738394041424344

4

5

614 15 16 1718 19202122232425262728293031323334353637383940414243444546474849

4

5 61617 18 19 20 21 22232425262728293031323334353637383940414243444546474849

7

8 9 10 11 12 13 14 15 16 17 18 19 20

5

6 7 8 9 10

4

5 6 711 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 2728293031323334353637383940414243

3

4

4

5 6 7

2

38 9 10 11 12 13 14 15 16 17 18 19 20 21 22

6

7 8 9 10 11 12 13 14 15

4

5

6 7 8

2

3

4

5

6 7 8 99 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

3

4

5 69 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2816 17 18 19 20 2122 2324 25262728293031323334353637383940414243444546474849

7

8 9 10 11 12 13 14 15 16 17 1811 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28293031323334353637383940414243

6

7 8 9 10 11 12 1312 13 14 15 16 17 18 19 20 21 22 23 24 25 26 2728 29303132333435363738394041424344

6

7 8 9 10 11 12 131617 18 19 20 21 22 232425262728293031323334353637383940414243444546474849

6

7 8 9 10 11 12 13 14 15 16 17

4

5

6 7 8 9

3

4

5 6

5

6

7 8 9 10

6

7 8 9 10 11 12 13 14 15

5

6

7 8 9 10

4

5

625262728293031323334353637383940414243444546474849

4

5

6 7

2

4

5 6

3

4

5

0.1

1

10

100

[sec]
1000

0.1 1 10 100 1000 [sec]

S
ym

bo
lic

 B
oo

m

Symbolic Boom with POR

4

5

6 7 8

3

4

4

5

6 7

3

4

2

3

4

4

5

6

4

5

6

3

4

5

6

7 8 9 10

4

5 6 72

2

6

7

8 9 10

3

4

6

7

8

9 10

6

7

8

9 10

7

8

9

10

11 12

5

6 7 8

6

7

8

9 10

7

8

9

10 11 12

4

5

6

3

4

2

3

4

5

6

7

6

7

8 9

3

4

5

2

5

6

7

11

12

13

14 15 16 17 18

7

8 9 10 11

4

5 6

2

3

4

3

4

3

4

57 8 9 10 11 12 13
2

3

4

5

6

7

3

4 5

7

8 9 10 11 12

4

5

6 7

3

4

5

4

5

6

6

7

8

9 10

3

4

3

4

5

4

5 6

2
3

4

5

6

2

3

7 8 9 10 11

4

5

6 7

4

5

3

4

2

3

6

7

8 9

6

7

8

9

5

6

7

2

3

4

5 6 7 8

3

4

5 6

5

6 7

6

7

8

9

10

4

5

6

3

4 5

2

3

4

5

6

7

4

5

6

7

6

7

8 9

4

5

6

7

3

4

5

6 7 8

2

3

4

5

6 7

2
4

5 6 7

4

5

6 7 2

7

8 9 10 11

4

5

6

7

2

3

4

5 6

6

7

8 9

4

5

6

3

4 5

4

5 6 7

5

6

7

8

3

4

3

4

3

4

5

7

8

9

10 11 12

3

4

5 6

2

3

10 11 12 13 14 15 16 17 18

3

4

3

46 7 8 9 10 11 12

6

7

8

9 10

3

4

7 8 9 10 11 12

3

4

6

7

8

9 10

4

5

6 7

7

8 9 10 11

4

5

6 7

3

4

5 6

3

4

5

3

4

5

7

8 9 10 11

7

8

9 10 11 12

5

6

7

7

8 9 10 11

2

3

4

4

5

6

4

5 6

3

4

4

5

6

5

6 7

4

5

6

4

5 6 7

5

6

7

3

4

3

4

5

3

4

6

7

8

9 10

2

3

4

5

6

6

7 8 9 10

2
3

4

5

6

4

5

6

3

4

5

6 7

3

4

3

4

5

5

6 7 8

4

5 6

3

4

5

3

4

6

7

8 9

3

4

6

7 8 9 10

4

5

6 7

4

5

6

3

4

2 3
4

5

6

7

8 9 10 11

7

8

9 10 11 12

12

13

14

15

16

17

18

19

20

4

5 6

5

6

7

8

6

7

8

9 10

4

5

6

5

6

7

8

2

3

3

4

3

4

5

3

4

7

8

9 10 11 12

7

8

9

10 11 12

3

4

5

7

8

9

10 11 12

2

5

6

7

10

11

12

13

14 15 16 17 18

5

6

7 8 9

7

8

9

10 11 12

3

4

5 6

4

5

6

5

6

7

6

7

8

9 10

3

4
5

4

5 6 7

6

7

8 9

2

5

6

7

8

3

4

5

5

6

7

7

8 9 10 11

3

4

5

5

6

7

8

6

7

8

99 10 11 12 13 14 15 16 17

4

5

6 7 8

3

7

8 9 10 11

4

5

4

5

6

3

4

5 6 7 8 9 10

3

4

5 6

5

6 7 8

3

4

3

4

5

4

5 6

6

7

8

9 10

4

5

6 7

8

9

10 11 12 13 14

4

5 6 7

7

8

9

10 11 12

5

6

7

8

5

6 7 8 9

4

5 6 7

6

7

8

9 10

3

4

5

4

5 6

2

14 15 16 17 18 19 20 21 22

5

6

7

4

5

2

3
4

4

5

6

6

7

8 9 10

4

5 6

5

6

7

8

5

6

7

6

7

8

97 8 9 10 11 12

7

8

9 10 11 12

5

6

7 8

7

8

9

10 11 12

5

6

7 8

4

5

6

3

4

5

4

5

6

5

6

7

4

5

6

4

5

14 15 16 17 18 19 20 21 227 8 9 10 11 12 13 14

2

3

4

5

3

4

5

The chart on page 4 (left) compares the bounded version of Boom with
counter abstraction against the lazy version of GetaFix [9] (which performs
better than eager). GetaFix targets recursive Boolean programs with a bounded
number of context-switches. To compare with Boom, we chose a non-recursive
example provided on the GetaFix website. The time for GetaFix to convert
the example into a sequential program is tiny and omitted. The table illustrates
the time to explore the sequentialized program using Moped-1, for different
context-switch bounds. Note that Boom, in contrast, explores any interleaving.

3



The graph on page 4 (right) shows our preliminary thread-state analysis
of Boolean programs with unbounded thread creation. We see that for many
examples, the running times are very small. On the other hand, 301 of 570 cases
did not terminate within 60 min. We observed no more than 43 non-zero counters
in any global state, despite millions of conceivable local states.

n
Boom GetaFix/cont. bd. [sec]
[sec] 1 2 3 4 5 6

2 < 0.1 0.1 0.4 2.0 8.7 41 139
3 0.1 0.1 1.0 0.6 4.8 30 187
4 1.2 0.1 1.9 1.2 12.2 146 1318
5 12.1 0.14 2.8 2.3 30.6 426 —
6 88.8 0.2 3.9 3.1 51.7 901 —

Benchmarks on Intel 3GHz, with
timeout 60 mins, memory-out 4 GB. 0.01

0.1

1

10

100

[sec]
1000

S
ym

bo
lic

 K
ar

p-
M

ill
er

Boolean program

4 Related Work and Conclusion

There are a few tools for the analysis of sequential Boolean programs [2, 6].
When extended to multiple threads, the problem becomes undecidable. To allow
an algorithmic solution, Boom disallows recursion. There are many tools avail-
able for the analysis of VASS. Closest to our work are the applications of these
tools to Java [5, 7] and to Boolean programs [1]. These tools compile their input
into an explicit-state transition system, which may result in a high-dimensional
VASS. Our experiments with explicit-state encodings (not shown) indicate that
encoding Boolean programs symbolically is mandatory. We believe Boom to be
the first exact tool able to analyze non-recursive concurrent Boolean programs
with bounded replication efficiently, and to extend the underlying technique to
the unbounded case with reasonable performance.

References

1. T. Ball, S. Chaki, and S. Rajamani. Parameterized verification of multithreaded
software libraries. In Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), 2001.

2. T. Ball and S. Rajamani. Bebop: A symbolic model checker for Boolean programs.
In Model Checking of Software (SPIN), 2000.

3. G. Basler, D. Kroening, M. Mazzucchi, and T. Wahl. Symbolic counter abstraction
for concurrent software. In Computer-Aided Verification (CAV), 2009.

4. G. Basler, D. Kroening, and G. Weissenbacher. SAT-based summarization for bool-
ean programs. In SPIN, 2007.

5. G. Delzanno, J.-F. Raskin, and L. V. Begin. Towards the automated verification
of multithreaded Java programs. In Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), 2002.

4



6. J. Esparza and S. Schwoon. A BDD-based model checker for recursive programs.
In Computer-Aided Verification (CAV), 2001.

7. G. Geeraerts, J.-F. Raskin, and L. V. Begin. Expand, enlarge and check... made
efficient. In Computer Aided Verification (CAV), 2005.

8. R. Karp and R. Miller. Parallel program schemata. Computer and System Sciences,
1969.

9. S. L. Torre, P. Madhusudan, and G. Parlato. Reducing context-bounded concurrent
reachability to sequential reachability. In CAV, 2009.

5



Appendix

A Presentation

The presentation will be split roughly half-and-half into background information
(Boolean programs, counter abstraction and the extension to the Karp-Miller
construction) and tool demonstration. The presentation will feature the differ-
ent algorithms and options offered by Boom in increasing difficulty and power,
applied to a single, more or less easily readable Boolean program. At each stage,
we will demonstrate Boom’s performance, by comparing it to alternative imple-
mentations and tools, as we have in part already done in this submission. The
demonstration will at least cover the following capabilities:

– how SatAbs generates a Boolean program from a C program:
http://www.cprover.org/boolean-programs/example1

While this is not done using Boom, it clearly is part of predicate abstraction
and required for understanding the whole story.

– a comparison of how the performance of the different algorithms (sequen-
tial exploration, symbolic concurrent exploration, counter abstraction, karp-
miller) with and without partial-order reduction.
This emphasizes the capabilities of Boom.

– for longer computations, how statistical information is printed along the way:
http://www.cprover.org/boom/screenshots.shtml#run

This emphasizes the user-friendliness of Boom.
– explanations of the statistics indicated after the analysis:

http://www.cprover.org/boom/screenshots.shtml#statistics

B Development and Applications of Boom

Boom has been developed in the context of the PhD thesis of one of the authors
of this paper. The goal was a competitive reachability checker for the SatAbs-
framework. It started as the first tool that implemented the summarization algo-
rithm for Boolean programs using solvers for SAT and QBF formulas. Currently,
MiniSat, Quantor and sKizzo are supported.

In the course of about the past two years, support for concurrent Boolean
programs has been added; we focused here on BDD-based data structures. Be-
ginning with a simple symbolic exploration engine, we added various forms of
partial-order reduction to optimize the performance. This was followed by our
implementation of counter abstraction, which is conceptually easy, but techni-
cally non-trivial in a symbolic setting, especially when tackling the local-state
explosion problem mentioned in this paper. From there, it was a relatively small
step to extend the method to unbounded threads, realizing that converting a
Boolean program to a vector-addition system is tantamount to applying un-
bounded counter abstraction to it. The challenge is rather to make the explo-
ration of the resulting counter machine efficient.

6



Currently, researchers from ETH Zurich and Oxford University are building
tools that use Boom as the underlying reachability engine for Boolean pro-
grams. Among these are the SystemC simulator Scoot (http://www.cprover.
org/scoot) and SatAbs (http://www.cprover.org/satabs). Embedded in the
DDverify driver harness (http://www.cprover.org/ddverify), the combination
of SatAbs and Boom is able to verify properties on a large set of concurrent
Linux drivers.

C Availability of Boom

Boom is available at http://www.cprover.org/boom. This website contains

– detailed instructions on how to download and install Boom,
– screen-shots of using the tool, as mentioned in Section A.

A detailed explanation of the syntax and semantics of Boolean programs
including a parser skeleton and a benchmark set is available at:
http://www.cprover.org/boolean-programs.

7


