
Approximation Refinement for
Interpolation-Based Model Checking�

Vijay D’Silva1, Mitra Purandare1, and Daniel Kroening2

1 Computer Systems Institute, ETH Zurich, Switzerland
{firstname.lastname}@inf.ethz.ch

2 Computing Laboratory, Oxford University, UK
kroening@comlab.ox.ac.uk

Abstract. Model checking using Craig interpolants provides an effec-
tive method for computing an over-approximation of the set of reachable
states using a SAT solver. This method requires proofs of unsatisfiabil-
ity from the SAT solver to progress. If an over-approximation leads to a
satisfiable formula, the computation restarts using more constraints and
the previously computed approximation is not reused. Though the new
formula eliminates spurious counterexamples of a certain length, there is
no guarantee that the subsequent approximation is better than the one
previously computed. We take an abstract, approximation-oriented view
of interpolation based model checking. We study counterexample-free ap-
proximations, which are neither over- nor under-approximations of the
set of reachable states but still contain enough information to conclude
if counterexamples exist. Using such approximations, we devise a model
checking algorithm for approximation refinement and discuss a prelimi-
nary implementation of this technique on some hardware benchmarks.

1 Introduction

Model Checking is an algorithmic technique for establishing that a transition
system satisfies certain mathematically specified correctness requirements [1].
Symbolic model checking techniques employ implicit representations of set of
states such as Binary Decision Diagrams (BDDs) or propositional logic formulae.
Formulating stages in model checking as a Boolean satisfiability (SAT) problem
allows model checking tools to harness the capabilities of propositional SAT
solvers, thereby greatly enhancing their scalability. However, image computation
and fixed point detection, two essential steps in model checking, both involve
the expensive operation of quantifier elimination.

A Craig interpolant is a formula, which can be extracted from a resolution
proof generated by a SAT-solver in linear time [2,3]. For a suitably constructed
Boolean formula, the interpolant provides a conservative approximation of the
image, obviating the need for precise image computation [4]. Interpolants also

� This research is supported by SRC contract 2006-TJ-1539 and a DAC graduate
fellowship.

F. Logozzo et al. (Eds.): VMCAI 2008, LNCS 4905, pp. 68–82, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Approximation Refinement for Interpolation-Based Model Checking 69

provide a means for detecting fixed points detection without quantifier elimi-
nation. On the other hand, the approximate image may contain spurious coun-
terexamples, necessitating quality guarantees for the approximation.

The progress and efficiency of an interpolation-based model checking algo-
rithm is contingent on its ability to (a) avoid and eliminate spurious coun-
terexamples, and (b) to rapidly reach a fixed point. If the original algorithm
encounters a spurious counterexample, the computation is begun afresh using a
more constrained formula. Though techniques have been suggested for reusing
interpolants [5], there is a significant loss of information between computations
using different constraints. In particular, the approximation is guaranteed to ex-
clude spurious counterexamples shorter than a specified bound. Increasing the
bound from k to k′ only guarantees that spurious counterexamples shorter than
k′ are eliminated. The new approximation may contain spurious counterexam-
ples longer than k′, which were previously absent, and may omit states that
were previously known to be safe. Thus, both the spurious counterexamples
and the number of iterations may differ vastly between subsequent runs of the
interpolation-based algorithm.

Contribution. The motivation for our work is to devise a method to reuse and
refine approximations after each restart. To this end, our contributions are:

1. Modeling interpolation-based model checking with approximate image and
pre-image operators that provide counterexample guarantees. This abstract
view allows us to employ standard tools from fixed point approximation.

2. Counterexample-free approximations. These neither over- nor under-approxi-
mate the set of reachable states but contain sufficient information to conclude
if counterexamples exist. Such approximations do not result in satisfiability
and can be reused.

3. A new algorithm for interpolation-based model checking. We combine ap-
proximate forward and backward analysis to successively refine counterex-
ample-free approximations until a result is obtained.

Related Work. Model checking using interpolants was first proposed in [4].
Marques-Silva [6,5] identifies optimizations and conditions for interpolant reuse,
but no guarantee about the approximation is provided. In fact, Jhala and McMil-
lan [7] report that the interpolants are “often unnecessarily weak,” and introduce
an interpolant strengthening method. Their observation concurs with our expe-
rience that the interpolant is often too weak to admit reusable approximations.

Approximate techniques combining forward and backward reachability are
well known in symbolic model checking with BDDs [8,9,10] and abstract in-
terpretation [11,12], and have been analyzed theoretically [13,14]. The work of
Cabodi et al. [15] is closest to ours, combining forward and backward analyzes
with interpolants. Their focus is eliminating redundancy in the interpolants, but
reuse or refinement are not considered. Refinement techniques using interpola-
tion focus on abstractions of the transition relation [16] rather than approxima-
tions, as we do. Our algorithm for refining counterexample-free approximations

70 V. D’Silva, M. Purandare, and D. Kroening

is inspired by that of [12] for refining abstract domains. The differences are that
our approximation operators are not monotone and our algorithm is based on
our fixed point characterization of counterexample-free approximations.

2 Background

We begin with a review of finite state model checking, followed by a description
of symbolic model checking using Craig interpolants.

2.1 Finite State Model Checking

A transition system M = (S, T) consists of a finite set of states S, and a tran-
sition relation T ⊆ S × S. We fix M as the transition system for the rest of the
paper. A path is a sequence of states s0 → · · · → sn such that for 0 ≤ i < n,
the pair (si, si+1) ∈ T . The image of a set of states Q ⊆ S is the set of suc-
cessor states with respect to T , given by the operator post(Q) = {s′ ∈ S|∃s ∈
Q and (s, s′) ∈ T }. Let post0(Q) = Q and posti+1(Q) = post(posti(Q)). Given
a set I ⊆ S of initial states, the set of states reachable from I and a fixed point
characterization thereof are given by the equation:

RI =
⋃

i≥0

posti(I) = μQ.(I ∪ post(Q))

The pre-image of a set Q ⊆ S is the set of states with a successor in Q, de-
scribed by the operator pre(Q) = {s ∈ S|∃s′ ∈ Q and (s, s′) ∈ T }. The set of
backward reachable states from a set F ⊆ S of failure states and a fixed point
characterization thereof are given by the equation:

BF =
⋃

i≥0

prei(F) = μQ.(F ∪ pre(Q)) .

A set of states P is inductive if for any Q ⊆ P , it holds that post(Q) ⊆ P .
The set P is an inductive invariant of a system M with initial states I if P is
inductive and I ⊆ P . Observe that RI is the smallest inductive invariant of M ,
and that BF , the complement of BF , is inductive.

Given sets I of initial and F of failure states, with I ∩ F = ∅, let 〈I, F 〉
denote the assertion that the states in F are unreachable from those in I. The
verification problem requires deciding if 〈I, F 〉 holds for M . We write M |= 〈I, F 〉
if the assertion holds. A counterexample to 〈I, F 〉 is a path s0 → · · · sn with
s0 ∈ I and sn ∈ F . A possible counterexample is a path with s0 ∈ I or sn ∈ F .
A spurious counterexample is a path with sn ∈ F and s0 /∈ RI or s0 ∈ I and
sn /∈ BF . If RI ∩ BF = ∅, we can conclude that M |= 〈I, F 〉.

The length of a path is the number of transitions on it. Consider the set of
shortest paths between pairs of states in S. The diameter of M is the length of
the longest path in this set. The reachability diameter of I ⊆ S, denoted rd(I),
is the length of the longest path in this set emanating from a state in I. The
backward diameter of F ⊆ S, denoted bd(F), is the length of the longest path in
this set terminating in a state in F .

Approximation Refinement for Interpolation-Based Model Checking 71

2.2 Symbolic Model Checking Using Interpolants

In SAT-based symbolic model checking, sets and relations are represented using
propositional logic formulae. In the sequel, we use sets and relations, and their
propositional encoding by their characteristic Boolean functions interchangeably.

In 1957, Craig showed that for each inconsistent pair of formulae A, B in first
order logic, there exists a formula ϕ – the Craig interpolant [17] – such that

– A implies ϕ,
– ϕ is inconsistent with B, and
– ϕ refers only to non-logical symbols common to A and B.

Intuitively, the interpolant ϕ can be understood as an abstraction of A. Comput-
ing precise images and pre-images using SAT is an expensive operation. McMillan
proposed using Craig interpolation for effective, over-approximate image com-
putation [4]. Given a depth k, one starts with an unwinding of the transition
relation as in Bounded Model Checking (BMC):

I(x0) ∧ T (x0, x1) ∧ . . . ∧ T (xk−1, xk) ∧ (F (x1) ∨ · · · ∨ F (xk)) (1)

A SAT solver is used to determine if the formula above is satisfiable. If so,
there exists a counterexample to 〈I, F 〉 of length at most k and the procedure
terminates reporting an error. Otherwise, the formula is partitioned into two
parts denoted by A and B as below.

A ≡ I(x0) ∧ T (x0, x1)
B ≡ T (x1, x2) ∧ . . . ∧ T (xk−1, xk) ∧ (F (x1) ∨ · · · ∨ F (xk)) (2)

The formulae A and B are inconsistent, so there exists an interpolant, say ϕ.
The interpolant represents a set that contains post(I), i.e., over-approximates
the image of I. In addition, no failure state can be reached from ϕ in up to
k − 1 steps because ϕ and B are inconsistent. The algorithm proceeds to the
next iteration by checking 〈ϕ, F 〉, which may yield a new interpolant ϕ′. If an
interpolant implies the disjunction of all previously computed interpolants, a
fixed point is reached, and one may conclude that F is unreachable from I.

However, as ϕ over-approximates the image, it may represent states that are
not reachable, and thus, Eq. 1 with ϕ(x0) in place of I(x0) may become satisfi-
able even though no counterexample exists. In this case, McMillan’s technique
restarts the approximation with a higher value of k. The previously computed
interpolants are abandoned, and the only information retained after a restart is
the new value of k.

3 Approximate Analysis Using Counterexample
Guarantees

3.1 Approximations in Model Checking

Interpolation-based model checking relies on computing approximations. In gen-
eral, model checking methods that use approximations face two challenges:

72 V. D’Silva, M. Purandare, and D. Kroening

1. Counterexamples. Let s0 → · · · → sn with sn ∈ F be a possible coun-
terexample. Deciding if s0 is reachable is as hard as model checking, hence
other approaches are required to deal with counterexamples.

2. Progress. If the approximation computed does not lead to a conclusive an-
swer, a better approximation has to be found, either by refining the existing
one or repeating the computation using a better approximation operator.

Interpolation-based methods provide a counterexample guarantee, i.e., a for-
mal statement about the counterexamples in the approximation. If a possible
counterexample is encountered, the fixed point computation is repeated using a
stronger guarantee. Though a stronger guarantee eliminates spurious counterex-
amples of a given length, the approximation computed need not be comparable
to the previous one. In particular, the new approximation may contain spurious
counterexamples that were previously absent and omit states previously known
not to lead to counterexamples of a certain length.

We model the image computation step in interpolation-based model checking
using approximate image operators and formalize the notion of counterexam-
ple guarantees. The goal of this formalization is to obtain an abstract, approxi-
mation-oriented view of interpolation-based model checking. This view allows
us to utilize ideas from approximate model checking [8] and abstract interpre-
tation [18] to derive a new algorithm incorporating approximation reuse and
refinement.

3.2 Approximation Operators

We briefly recall standard results from fixed point approximation about combin-
ing forward and backward analyzes (See [19] for the related background).

An approximate image operator ˆpost satisfies post(Q) ⊆ ˆpost(Q) for all Q.
An approximate pre-image operator ˆpre satisfies pre(Q) ⊆ ˆpre(Q) for all Q. The
approximate sets of forward- and backward-reachable states are

R̂I =
⋃

i≥0

ˆpost
i
(I) B̂F =

⋃

i≥0

ˆprei(F) .

It is a standard fixed point approximation result that RI ⊆ R̂I and BF ⊆ B̂F .
We say approximate operator to refer to an approximate post- or pre-image
operator. An operator F : S → S is additive if F (Q ∪ Q′) = F (Q) ∪ F (Q′). F is
monotone if for Q ⊆ Q′, it holds that F (Q) ⊆ F (Q′). An additive operator on a
lattice is necessarily monotone. The operators post and pre are additive, hence
monotone. We consider operators ˆpost and ˆpre that are not additive or monotone.
The approximate image obtained depends on a resolution proof generated by a
SAT solver, which in turn depends on the SAT solver’s heuristics, thus we cannot
make conclusions about monotonicity or additivity. This is a significant difference
from several approximate operators in the literature. Widening operators [18]
may also not be additive or monotone.

Approximation Refinement for Interpolation-Based Model Checking 73

Recall that 〈I, F 〉 is the assertion that F is unreachable from I. Our aim
is to determine if 〈I, F 〉 holds by combining forward and backward analysis to
successively refine approximations of RI and BF .

Definition 1. Consider the assertions 〈I, F 〉 and 〈I ′, F ′〉. The assertion 〈I ′, F ′〉
refines 〈I, F 〉 if I ′ ⊆ I and F ′ ⊆ F . The assertion 〈I ′, F ′〉 is sufficient for 〈I, F 〉
if it holds that if M |= 〈I ′, F ′〉 then M |= 〈I, F 〉.

If 〈I ′, F ′〉 refines 〈I, F 〉, then 〈I, F 〉 is sufficient for 〈I ′, F ′〉. This is the core
idea behind conservative approximation and abstraction techniques. Another
approach, which we adopt, is to use conservative methods to refine a verification
problem to a sufficient one. Lemma 1 illustrates one such well known refinement.

Lemma 1. M |= 〈I, F 〉 if and only if M |= 〈I ∩ BF , F ∩ RI〉.

If approximate sets are used, 〈I ∩ B̂F , F ∩ R̂I〉 is sufficient for 〈I, F 〉, but if
M �|= 〈I ∩ B̂F , F ∩ R̂I〉, the analysis is inconclusive. In this situation, we refine
the approximations R̂I and B̂F , which in turn may lead to a refinement of 〈I ∩
B̂F , F ∩R̂I〉 sufficient for 〈I, F 〉. Lemma 2 provides a fixed point characterization
of this iterative refinement process (See [14] for a detailed discussion). The fixed
point characterization does not affect the precise result computed. In contrast, if
approximate operators are used, fixed point iteration may lead to a more precise
result than just 〈I ∩ B̂F , F ∩ R̂I〉.

Lemma 2. Let RI and BF be the forward- and backward-reachable states for
the verification problem 〈I, F 〉. Let R̂I and B̂F be corresponding approximate
sets computed with ˆpost and ˆpre.

1. Let G(〈X, Y 〉) = 〈I ∩X ∩BY , F ∩Y ∩RX〉 be a mapping between verification
problems. Then, 〈I ∩ BF , F ∩ RI〉 is the greatest fixed point of G.

2. Let ˆpost and ˆpre be monotone. Define Ĝ(〈X, Y 〉) = 〈I∩X∩B̂Y , F ∩Y ∩R̂X〉.
Let 〈IG, FG〉 be the greatest fixed point of G and 〈IĜ, FĜ〉 be the greatest fixed
point of Ĝ. Then, IG ⊆ IĜ and FG ⊆ FĜ.

Such a characterization forms the basis of our algorithm. Though the approxi-
mate operators we consider are not monotone, we can define an iterative compu-
tation to obtain a similar result. The main obstacle to realizing such an iteration
is that R̂I or B̂F cannot be computed if the approximation introduces possible
counterexamples. Interpolants are computed from proofs of unsatisfiability and
counterexamples result in a satisfiable formula. Therefore, we need to study
counterexamples in the approximation and design methods to avoid them.

3.3 Counterexample Guarantees

Approximate images computed by interpolation do not contain spurious coun-
terexamples shorter than the specified bound. We formalize this notion as a
counterexample guarantee and study its properties.

74 V. D’Silva, M. Purandare, and D. Kroening

Definition 2. A counterexample guarantee (P, k) is a set of states P ⊆ S and
a natural number k. An approximate image operator ˆpost provides the coun-
terexample guarantee (P, k) if for all sets Q ⊆ S, states s ∈ ˆpost(Q) and paths
s = s0 → · · · → sj with j < k, if sj ∈ P , then s ∈ post(Q). A counterexample
guarantee for an approximate pre-image operator ˆpre is similarly defined.

We can be certain that a state in the approximate image, leading to a counterex-
ample shorter than k is not introduced by the approximation. Similarly, a state in
the approximate pre-image, reachable from a state in P by a path shorter than
k is also contained in the precise pre-image. For example, the counterexample
guarantee (F, 0) provides no information about the spurious states in an approx-
imate image. If (F, 1) is the guarantee, the approximation does not introduce any
states in F , but may introduce states on a path to F . Thus, if the approximate
image of Q contains a state in F , we know that a state in Q leads to F .

Let Int(A, B) be a procedure that returns the interpolant for an unsatisfiable
pair A and B. An approximate image providing the counterexample guarantee
(F, k) can be derived by computing Int(A, B), where A and B are as follows [4]:

A ≡ Q(x0) ∧ T (x0, x1)
B ≡ T (x1, x2) ∧ . . . ∧ T (xk−1, xk) ∧ (F (x1) ∨ · · · ∨ F (xk)) (3)

Similarly, we obtain an approximate pre-image operator providing the counterex-
ample guarantee (I, k) by computing Int(A, B), where A and B are:

A ≡ T (xk−1, xk) ∧ Q(xk)
B ≡ (I(x0) ∨ · · · ∨ I(xk−1)) ∧ T (x0, x1) ∧ . . . ∧ T (xk−2, xk−1)

(4)

We refer to Eq. 3 and 4 as interpolation formulae. If the counterexample guar-
antee an operator provides is insufficient to reach a conclusion about a possible
counterexample, we can generate an operator providing a stronger guarantee.

Definition 3. A counterexample guarantee (P ′, k′) is stronger than (P, k) if
P ⊆ P ′ and k ≤ k′.

McMillan’s original algorithm increases k if a possible counterexample is discov-
ered [4], and Marques-Silva [6] suggests heuristics for choosing the increment.
This processes can be viewed as iterative strengthening of a counterexample
guarantee until it is, intuitively speaking, strong enough. Another possibility
is to add states to P . Let R̂I and B̂F be computed with ˆpost and ˆpre. A
counterexample guarantee (P, k) is image-adequate if R̂I contains no spuri-
ous counterexamples. (P, k) is pre-image-adequate if B̂F contains no spurious
counterexamples.

Theorem 1. Let 〈I, F 〉 be a verification problem. The counterexample guarantee
(F, bd(F) + 1) is image-adequate and (I, rd(I) + 1) is pre-image-adequate.

Adequate guarantees are worst-case requirements. In practice, properties can be
proved using approximate operators that provide weaker guarantees [4]. Corol-
lary 1 indicates the bounds for the special cases of inductive sets and Corollary 2
recalls different adequate guarantees.

Approximation Refinement for Interpolation-Based Model Checking 75

Corollary 1. The counterexample guarantee (F, 1) is image-adequate if F is
inductive. (I, 1) is pre-image-adequate if I is inductive.

Corollary 2. For k > 1, if (F, k) is image-adequate, then so is (F ∪pre(F), k−
1). If (I, k) is pre-image-adequate, then so is (I ∪ post(I), k − 1).

To see Corollary 2, observe that if I and F are not inductive, then rd(I) =
rd(I ∪ post(I)) + 1 and bd(F) = bd(F ∪ pre(F)) + 1. Thus, if, when feasible, the
counterexample guarantee is strengthened by taking the union with an image
or pre-image in addition to increasing k, fewer operators may have to be tried
before the adequacy bound is reached.

3.4 Counterexample-Free Approximations

Strengthening a counterexample guarantee eliminates spurious counterexamples
shorter than the specified bound, but need not result in a better approxima-
tion. We want to design an approximate image operator that also guarantees an
improvement in the approximation. One possibility is to constrain subsequent
approximations using previous ones.

A sequence of approximations cannot directly be reused after a restart because
they may lead to satisfiability. The approximation cannot be used to constrain
the next one because it may not include the reachable states. Marques-Silva [5]
identifies conditions for interpolant reuse, but there is no guarantee that the new
approximation computed is an improvement.

If the states leading to satisfiability can be eliminated, the formula will again
be unsatisfiable and the method can progress. In particular, we want a counter-
example-free approximation, an approximate set of states, which excludes viola-
tions but retains enough information to conclude if violations exist [12]. Figure 1
illustrates the relationship precise and approximate counterexample-free forward
approximations. We define the set of counterexample-free reachable states, SI,F ,
to contain all states reachable from I by a path that never visits F . Define CI,F

to be the states backward-reachable from F by a path that never visits I.

SI,F = μQ.[(I ∪ post(Q)) ∩ F] CI,F = μQ.[(F ∪ pre(Q)) ∩ I]

The counterexample-free approximations of SI,F and CI,F in terms of the oper-
ators ˆpostF (Q) = [ˆpost(Q) ∩ F] and ˆpreI(Q) = [ˆpre(Q) ∩ I] and are as below.

ŜI,F =
⋃

i≥0

ˆpost
i

F (I) ĈI,F =
⋃

i≥0

ˆprei
I(F)

The approximation computed using an ˆpostP , for a set of states P , is contained
in P . Therefore, we obtain a new approximation, which is not worse than the
previous one as desired. If there is a counterexample, the sets post(SI,F)∩F and
pre(CI,F) ∩ I are not empty. If M |= 〈I, F 〉, then RI = SI,F and BF = CI,F .
The sets ŜI,F and ĈI,F are approximations which do not contain violations but
may have states leading to a violation.

76 V. D’Silva, M. Purandare, and D. Kroening

Counterexample−Free

Failure

Reachable

Counterexample−free Approximation

Init

Fig. 1. Counterexample-free forward approximation

Lemma 3. Let 〈I, F 〉 be an assertion, RI and BF be forward- and backward-
reachable states, and SI,F , CI,F , ŜI,F and ĈI,F be as above.

1. RI ∩ F = ∅ if and only if RI = SI,F

2. BF ∩ I = ∅ if and only if BF = CI,F

3. SI,F ⊆ ŜI,F and CI,F ⊆ ĈI,F

Assume, for now, that we can compute ŜI,F and ĈI,F using an interpolation-
based method. If post(ŜI,F) ⊆ ŜI,F , we have an inductive invariant, which con-
tains RI and can conclude that the property holds. This can be determined using
a SAT solver to see if [ŜI,F (x0) ∧ T (x0, x1) ∧ F (x1)] is unsatisfiable. A similar
check applies for ĈI,F and fails if pre(ĈI,F) ∩ I is not empty.

Further, if M |= 〈I, F 〉, then ŜI,F and ĈI,F contain RI and BF , respectively.
If M �|= 〈I, F 〉, then ŜI,F and ĈI,F must contain a state on a path to and from a
violation, respectively. The sets ŜI,F and ĈI,F lose no information about whether
M |= 〈I, F 〉 and we can refine the verification problem to 〈I ∩ pre(ĈI,F)), F ∩
post(ŜI,F)〉. Theorem 2 formalizes these intuitive arguments.

Theorem 2. Let SI,F and CI,F be counterexample-free sets of forward- and
backward-reachable states.

1. The problem 〈I ∩ pre(CI,F), F ∩ post(SI,F)〉 is sufficient for 〈I, F 〉.
2. Let G(〈X, Y 〉) = 〈I ∩ X ∩ pre(CX,Y), F ∩ Y ∩ post(SX,Y)〉. Then, 〈I ∩

pre(CI,F), F ∩ post(SI,F)〉 is the greatest fixed point of G.

The proof is available in an electronic version of the paper. We can now use
approximate operators and define an iterative sequence to compute refinements
of 〈I, F 〉, which over-approximate the greatest fixed point of G (the design and
soundness of such an iteration follow from fixed point approximation [18]). We
still need a method to improve subsequent approximations because ˆpost and
ˆpre are not monotone. The approximations ŜX,Y and ĈX,Y contain sufficient

information to decide M |= 〈I, F 〉 and can thus be used to soundly constrain
new approximations.

Approximation Refinement for Interpolation-Based Model Checking 77

4 Approximation Refinement with Interpolation

We present an interpolation-based model checking algorithm. Novel aspects of
this algorithm are that:

1. It computes counterexample-free approximations, thus avoiding satisfiability
until a fixed point is reached.

2. If an approximation leads to an inconclusive answer, a new approximation
is computed, which is guaranteed to refine the previous approximation.

3. The approximation is improved using previously computed approximations,
ensuring that computed information is not lost.

An additional feature is that we combine forward and backward analysis. Such
combinations are by now standard in the model checking literature and have the
benefits of both analyzes such as faster convergence to a result.

4.1 Interpolant-Based Approximation Refinement

Our algorithm is shown in Figure 2. It is provided a verification problem 〈I, F 〉
as input. We assume that I ∩ F is the empty set. The pair 〈Ij , Fj〉 is a sufficient
refinement of 〈I, F 〉 obtained after j iterations. S̃j and C̃j are counterexample-
free approximations of the reachable and backward reachable states from Ij and
Fj , respectively. On Line 3, if a counterexample of length kj exists, an error is
returned. If not, two counterexample-free approximations are computed.

Recall that ˆpostF is an approximate operator returning [ˆpost(Q) ∩ F] for any
Q. The approximate operator ˆpreI similarly returns [ˆpre(Q) ∩ I] for any Q. We
can compute counterexample-free approximations using ˆpostFj

and ˆpreIj
, but

they are not guaranteed to refine S̃j−1 and C̃j−1 because ˆpost and ˆpre are not
monotone. Instead, on Line 8, we use the function [ˆpostFj

(Q) ∩ S̃j−1], to obtain
a counterexample-free approximation which does refine S̃j−1. On Line 9, we
compute a similar approximation, C̃j , which refines C̃j−1.

We then check, on Line 10, if either set leads to counterexample. If not,
we know that the approximation is an inductive set with no counterexamples,
containing the reachable states, and we return No Counterexample. If this
check fails, there are states in S̃j and C̃j , which lead to counterexamples. These
states may be introduced by the approximation. We progress by refining the
verification problem and incrementing the bound kj .

We need to implement all computations and checks in the algorithm using
a SAT solver as shown on Line 3. To determine if S̃j and C̃j lead to coun-
terexamples on Line 10, we check if either [S̃j(x0) ∧ T (x0, x1) ∧ Fj(x1)] or
[Ij(x0) ∧ T (x0, x1) ∧ C̃j(x1)] is unsatisfiable. The main challenge is to compute
the sets S̃j and C̃j . We propose two methods, each making a trade-off between
efficiency and accuracy. Given sets Q, F, S̃, we need to compute ˆpost(Q)∩F ∩ S̃.
We recall the interpolation formula.

A ≡ Q(x0) ∧ T (x0, x1)
B ≡ T (x1, x2) ∧ . . . ∧ T (xk−1, xk) ∧ (F (x1) ∨ · · · ∨ F (xk))

78 V. D’Silva, M. Purandare, and D. Kroening

Verify(M, 〈I, F 〉)
Input: Transition system M , Verification problem 〈I, F 〉

1: I1 = I, F1 := F, S̃0 := F, C̃0 := I, k1 = 1
2: for j = 1, 2, 3 . . . do
3: if Sat(Ij ∧ T (x0, x1) · · · T (xkj−1, xkj) ∧ Fj) then
4: return Counterexample

5: end if
6: Let ˆpost provide the guarantee (Ij , kj).
7: Let ˆpre provide the guarantee (Fj , kj).
8: S̃j :=

⋃
i≥0[ˆpostFj

(Ij) ∩ S̃j−1]

9: C̃j :=
⋃

i≥0[ˆpreIj
(Fj) ∩ C̃j−1]

10: if post(S̃j) ∩ Fj = ∅ or pre(C̃j) ∩ Ij = ∅ then
11: return No Counterexample

12: else
13: Ij+1 := Ij ∩ pre(C̃j)
14: Fj+1 := Fj ∩ post(S̃j)
15: kj+1 := kj + 1
16: end if
17: end for

Fig. 2. Interpolation-based Approximation Refinement

A possible counterexample exists if this formula is satisfiable. One possibility
is to compute all satisfying assignments to identify the states P ⊆ Q, which
lead to failures. If Q(x0) is replaced by Q(x0) ∧ ¬P (x0), the formula becomes
unsatisfiable and we can proceed. This process is repeated to obtain a sequence
of sets P1, P2, . . . of states leading to counterexamples. This method amounts
to computing pre-images of F contained in Q. If the approximation introduced
by the interpolant is small, the number of satisfying instances is small and this
procedure is feasible. We emphasize that this is not the same as computing
images using a SAT-solver. We compute states in the approximation leading to
satisfiability, rather than states in an image. If the set of reachable states is large,
but the spurious counterexamples introduced by the approximation are small,
this method is still feasible, whereas computing images this way is not.

Our second method uses the counterexample guarantee provided with Q. Any
spurious counterexample must be of length at least k. Thus, if we constrain the
formula above to be B ∧ ¬F (xk), the formula again becomes unsatisfiable. We
can compute Q′(x1) = Int(A, B ∧ ¬F (xk)), a set of states satisfying that every
path of length k − 1 from s either (a) never visits a failure state, or (b) visits a
failure state exactly after k − 1 steps. The possibilities are mutually exclusive. If
in the next iteration, the formula is unsatisfiable, we can compute the interpolant
and proceed as before. If the formula is satisfiable, the counterexample may be of
length k or k−1. We first add the constraint ¬F (xk−1) to the formula B above. If
it is unsatisfiable, we can proceed. Otherwise, we also add the constraint ¬F (xk).
The formula must now be unsatisfiable and we can compute the interpolant.

Approximation Refinement for Interpolation-Based Model Checking 79

With each constraint that is added, we obtain an approximate image which
provides us weaker counterexample guarantees.

Forcing unsatisfiability by adding constraints can be adopted every time the
formula becomes satisfiable. In the worst case, we may have to add ¬F (xi) for
all 2 ≤ i ≤ k. If the formula is still satisfiable, we can add the constraint ¬F (x1)
to the formula A of the pair. In this case, the interpolant is just ¬F (x1), which
is also the largest counterexample-free approximation we can obtain. A formal
statement of correctness follows.

Theorem 3. If the algorithm returns Counterexample, then M �|= 〈I, F 〉. If
the algorithm returns No Counterexample, then M |= 〈I, F 〉.

Proof. The proof of the negative case is straightforward, because an unwinding
of the transition relation is used to detect the counterexample.

To prove the positive case, consider the sets S̃j and C̃j . We have established in
Theorem 2 that 〈I∩pre(CI,F), F ∩post(SI,F)〉 is sufficient for 〈I, F 〉. It is enough
to show that 〈Ij , Fj〉 in the algorithm is an over-approximation of this pair. Let
〈Xj , Yj〉 be the sequence generated by the fixed point iteration in Theorem 2.
The sequence is decreasing, so SXj ,Yj ⊆ SXj+1,Yj+1 . The pair 〈Xj+1, Yj+1〉 is
computed using postYj and preXj . The corresponding sets computed using ˆpostYj

and ˆpreXj
must therefore be over-approximations. Further, each set S̃j is only

constrained using S̃j−1, which is an over-approximation of SIj ,Fj , therefore S̃j

over-approximates SIj ,Fj . The same applies for C̃j . The pair 〈Ij , Fj〉 computed
from this pair of sets is sufficient for 〈I ∩pre(CI,F), F ∩post(SI,F)〉. Correctness
follows. �

To complete the formal analysis, we have a statement about termination.

Theorem 4. The algorithm always terminates with a positive or negative result.

Proof. If M �|= 〈I, F 〉, then, because the sequence 〈Ij , Fj〉 computed by the al-
gorithm is sufficient for 〈I, F 〉, the pair Ij and Fj never becomes empty. In each
iteration, the bound kj is increased until it reaches the length of the counterex-
ample, when the failure is reported.

If M |= 〈I, F 〉, the bound kj is eventually increased to either rd(M) + 1
or bd(M) + 1. Recall from Theorem 1 that such a counterexample guarantee
is adequate, meaning that it does not introduce any spurious counterexamples.
Thus, in the next iteration, either Ij+1 or Fj+1 computed by the algorithm is
the empty set and the algorithm terminates. �

Optimizations. The algorithm as presented admits several optimizations.
These include standard methods such as frontier set simplification and logic
minimization. A standard check to make after Line 3 is to see if the new bound
is k-inductive [20]. Recent developments which may enhance our method are
dynamic abstraction and redundancy elimination for interpolants [15] and in-
terpolant strengthening [7]. Our current implementation is näıve and is based

80 V. D’Silva, M. Purandare, and D. Kroening

on the blocking clauses algorithm for AllSAT. Minimal inductive sub-clauses
extracted from counterexamples [21] may reduce the effort required to obtain an
unsatisfiable formula.

4.2 Experience

We have implemented a preliminary version of this algorithm and experimented
with some hardware benchmarks. We have proposed obtaining an unsatisfi-
able formula by either constraining the satisfiable formula using either blocking
clauses or the set of failure states. The second method being symbolic showed
more promise, but we are unable to present an evaluation due to technical prob-
lems (which we are rectifying). Thus, we can only present results for our algo-
rithm where the approximations are computed using AllSAT.

Given the preliminary nature of our implementation, our conclusions are, for
the moment, primarily qualitative.1 If the interpolation formula never becomes
satisfiable, our method essentially reduces to doing standard interpolation-based
model checking. The hardware benchmarks we considered can be divided into
three categories:

1. Small. Such circuits either have a small depth or result in approximations
which preserve unsatisfiability. Examples include the ITC ’99 benchmarks
[22]. The basic interpolation algorithm is able to prove properties of these
circuits using a small unwinding, so our method was never invoked.

2. Medium. These circuits compute arithmetic and Boolean functions. The over-
approximation introduced does lead to satisfiability and our technique does
help to reach a fixed point.

3. Large. These include processor benchmarks and satisfiable instances occur of-
ten. The enumerative procedure usually exhausts the memory or time limits
set. Our experience with such circuits is that the approximation introduced
by interpolation is extremely coarse, yielding no useful information.

It appears that our method is superfluous for small circuits, but may yield useful
invariants for intermediate circuits, though it is unclear if there will be a per-
formance improvement. With large circuits, the interpolants appear to be too
coarse and computing a fixed point provides no benefits. It is an open question
if methods for interpolant strengthening will help [7].

5 Conclusion

To summarize, we initiated a study of interpolation-based model checking using
fixed point approximation. We introduced counterexample-free approximations
to reduce the number of restarts and to enable the reuse of approximations during
model checking. Our verification algorithm progresses by iteratively strengthen-
ing counterexample guarantees and refining approximations.

1 The implementation is available at: http://www.verify.ethz.ch/ebmc/

Approximation Refinement for Interpolation-Based Model Checking 81

The new method yields useful invariants and reduces the restarts required
when model checking medium sized circuits but is unnecessary for small cir-
cuits. On large circuits, it is inconclusive, as it appears that the interpolants are
extremely coarse, so computing a fixed point does not yield much information.
This highlights the need for computing tighter interpolants, and other techniques
to force unsatisfiability, the focus of our current research.

References

1. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching-time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982)

2. Kraj́ıcek, J.: Interpolation theorems, lower bounds for proof systems, and inde-
pendence results for bounded arithmetic. Journal of Symbolic Logic 62, 457–486
(1997)

3. Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone
computations. Journal of Symbolic Logic 62, 981–998 (1997)

4. McMillan, K.L.: Interpolation and SAT-Based Model Checking. In: Hunt Jr., W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg
(2003)

5. Marques-Silva, J.: Interpolant learning and reuse in SAT-based model checking.
Electron. Notes Theor. Comput. Sci. 174, 31–43 (2007)

6. Marques-Silva, J.: Improvements to the Implementation of Interpolant-Based
Model Checking. In: Borrione, D., Paul, W. (eds.) CHARME 2005. LNCS,
vol. 3725, pp. 367–370. Springer, Heidelberg (2005)

7. Jhala, R., McMillan, K.L.: Interpolant-based transition relation approximation
(2007)

8. Govindaraju, S.G., Dill, D.L.: Verification by approximate forward and backward
reachability. In: International Conference on Computer-Aided Design (ICCAD),
pp. 366–370. ACM Press, New York (1998)

9. Cabodi, G., Nocco, S., Quer, S.: Mixing forward and backward traversals in guided-
prioritized BDD-based verification. In: Computer Aided Verification (CAV),
Springer, pp. 471–484. Springer, Heidelberg (2002)

10. Stangier, C., Sidle, T.: Invariant Checking Combining Forward and Backward
Traversal. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp.
414–429. Springer, Heidelberg (2004)

11. Cousot, P., Cousot, R.: Refining model checking by abstract interpretation. Auto-
mated Software Engineering 6, 69–95 (1999)

12. Cousot, P., Ganty, P., Raskin, J.F.: Fixpoint-guided abstraction refinements. In:
Symposium on Static Analysis (SAS), pp. 333–348. Springer, Heidelberg (2007)

13. Henzinger, T.A., Kupferman, O., Qadeer, S.: From Pre-historic to Post-modern
symbolic model checking. Formal Methods in System Design 23, 303–327 (2003)

14. Massé, D.: Combining Forward and Backward Analyses of Temporal Properties. In:
Danvy, O., Filinski, A. (eds.) PADO 2001. LNCS, vol. 2053, pp. 155–172. Springer,
Heidelberg (2001)

15. Cabodi, G., et al.: Stepping forward with interpolants in unbounded model check-
ing. In: International conference on Computer-aided design (ICCAD), pp. 772–778.
ACM Press, New York (2006)

82 V. D’Silva, M. Purandare, and D. Kroening

16. Somenzi, F., Li, B.: Efficient Abstraction Refinement in Interpolation-Based Un-
bounded Model Checking. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006 and
ETAPS 2006. LNCS, vol. 3920, pp. 227–241. Springer, Heidelberg (2006)

17. Craig, W.: Linear reasoning. A new form of the Herbrand-Gentzen theorem 22,
250–268 (1957)

18. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Principles
of Programming Languages (POPL), pp. 238–252. ACM Press, New York (1977)

19. Cousot, P.: Semantic foundations of program analysis. In: Program Flow Analysis:
Theory and Applications, pp. 303–342. Prentice-Hall, Englewood Cliffs (1981)

20. Sheeran, M., Singh, S., Stalmarck, G.: Checking safety properties using induction
and a SAT-solver. In: Formal Methods in Computer-Aided Design (FMCAD), pp.
108–125. Springer, Heidelberg (2000)

21. Bradley, A., Manna, Z.: Checking safety by inductive generalization of counterex-
amples to induction. In: Formal Methods in Computer-Aided Design (FMCAD),
IEEE, Los Alamitos (to appear, 2007)

22. Corno, F., Reorda, M.S., Squillero, G.: RT-level ITC’99 benchmarks and first
ATPG results. IEEE Design and Test 17, 44–53 (2000)

	Approximation Refinement for Interpolation-Based Model Checking
	Introduction
	Background
	Finite State Model Checking
	Symbolic Model Checking Using Interpolants

	Approximate Analysis Using Counterexample Guarantees
	Approximations in Model Checking
	Approximation Operators
	Counterexample Guarantees
	Counterexample-Free Approximations

	Approximation Refinement with Interpolation
	Interpolant-Based Approximation Refinement
	Experience

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

