Independence Abstractions and Models of
Concurrency

Vijay D’Silva!, Daniel Kroening?, and Marcelo Sousa?*

1 Google Inc., San Francisco
2 University of Oxford

Abstract. Mathematical representations of concurrent systems rely on
two fundamental notions: an atomic unit of behaviour called an event,
and a constraint called independence which asserts that the order in
which certain events occur does not affect the final configuration of
the system. We apply abstract interpretation to study models of con-
currency by treating events and independence as abstractions. Events
arise as Boolean abstractions of traces. Independence is a parameter to
an abstraction that adds certain permutations to a set of sequences of
events. Our main result is that several models of concurrent system are a
composition of an event abstraction and an independence specification.
These models include Mazurkiewicz traces, pomsets, prime event struc-
tures, and transition systems with independence. These results establish
the first connections between abstraction interpretation and event-based
models of concurrency and show that there is a precise sense in which
independence is a form of abstraction.

1 Models of Concurrency as Abstractions

Concurrency theory is rich with structures that have been developed for repre-
senting and modelling the behaviour of concurrent systems. These include Petri
nets [17], process algebra [8], Mazurkiewicz traces [13], partially-ordered multi-
sets (pomsets) [19], various event-based models such as event structures [23], flow
event structures [3], and event automata [18], and transition systems augmented
with independence information [22]. Research into comparative concurrency se-
mantics is concerned with identifying criteria for classifying and comparing these
models and constructions that translate between models when possible.

There are several approaches to comparative concurrency semantics. The
linear time-branching time spectrum [9] is a classification based on notions of
semantic equivalence between processes. The interleaving/non-interleaving clas-
sification, is based on whether a model distinguishes between concurrent execu-
tions and non-deterministic ones. In an interleaving semantics, the finest rep-
resentation of a systems execution is a linearly ordered sequence of events and
concurrency is understood in terms of the linearizations it induces. Examples
of interleaving models include traces, transition systems and synchronization

* Supported by a Google PhD Fellowship.



trees [22]. In the non-interleaving view, the behaviour of a system can be viewed
as a partial order on transitions or events. Examples of such models are Petri
nets, event based models and pomsets.

A third classification is based on the duality of state and observation, also
called an automaton-schedule duality [20]. State-based models such as automata
represent a system by states and state changes. An event or schedule-oriented
model focuses instead on the points of causal interaction between concurrent
events. The concurrency cube of [22] combines these three perspectives in clas-
sifying and comparing models of concurrency.

Each representation has distinct mathematical properties and leads to dif-
ferent algorithms for analysis of concurrent systems. In particular, partial or-
der reduction [11,7] is based on the theory of Mazurkiewicz traces, which is a
linear-time, event-based view, while net unfoldings [6] are based on event struc-
tures [23], a branching-time, event based model.

The Abstract Interpretation Perspective. Abstract interpretation is a theory for
approximation of semantics. A common, practical application of abstract inter-
pretation is static analysis of programs, but the framework has been applied to
compare and contrast semantic models [4]. The abstract interpretation approach
to comparative semantics is to start with an expressive semantics that describes
all the properties of interest in a system and then derive other semantic repre-
sentations as abstractions. Certain relationships between semantic models then
manifest as relationships between abstractions.

The motivation for this work stems from the development of a program
analyzer based on non-interleaving semantics [21]. An analyzer that uses an
event-based, non-interleaving representation can succinctly represent concurrent
schedules that would require an exponential number of interleavings in an inter-
leaving model [6,14]. On the other hand, event-based analyzers do not include
data abstraction: at present, distinct states give rise to distinct events, trigger-
ing an explosion of events [21]. The research in this paper is a first step towards
composing event-based models with abstract domains.

Contribution and Overview This paper examines different representations
of concurrent behaviour as abstractions of a fine-grained semantics of a system.
We advance the thesis that the fundamental components of several models of
concurrency are parameters to an abstraction functor and the models themselves
are abstract domains generated by this functor.

The first component of a concurrency model is an indivisible unit of compu-
tation called an event. We define events as Boolean abstractions that satisfy a
history condition. The second component of concurrency models is a notion of
independence, which dictates when events may fire concurrently. Independence
defines an abstraction of a domain of sequences of events. A concurrency model
arises as a composition of an event abstraction and an independence specifica-
tion. We demonstrate that several models of concurrency can be instantiated by
our domain functor. This research gives credence to the idea that concurrency
itself is a form of abstraction.



2 Order Theory and Abstract Interpretation Primer

Sets and Posets. We denote the subset ordering as C and strict subset as
C. The image of a set X C A with respect to a relation R C A x C is
the set R(X) = {y € C | z € X and (x,y) € R}. The preimage of X C C is
R71(X). The composition of R € A x B and S C B x C is the relation
Ro S ={(a,c) | (a,b) € R and (b,c) € S for some b € B}.

We assume the notions of a poset and a lattice. A bounded lattice has a least
element | and a greatest element T, called bottom and top, respectively. A
lattice L is complete if every subset S C L has a meet [ ].S and a join | | S. Su-
perscripts and subscripts introduced for disambiguation will always be dropped
when they are clear from the context.

Functions. Consider lattices (L, C,M,U) and (M, <, A, Y). A functiong : L — M
is monotone if, for all z and y in L, z C y implies g(z) < g(y). The function g
is a lattice homomorphism if it is monotone and satisfies g(x My) = g(x) A g(y)
and g(zUy) = g(x) Y g(y) for all z and y. A homomorphism of complete lattices
must further commute with arbitrary meets and joins, of Boolean lattices must
commute with complements, etc. A homomorphism with respect to some set of
lattice operations is one that commutes with those operations. The De Morgan
dual of a function f: L — M between Boolean lattices maps x to —f(—x).

Galois connections and Closures Let (L,C) and (M, <) be posets. A Galois
connection (L,C) % (M, <), is a pair of functionsa: L - M andy: M — L
satisfying that for all z € L and y € M, a(z) < y exactly if z C y(y). When
the orders involved are clear, we write L % M. A Galois connection is a
Galois insertion if « is surjective. A function in L — L is called an operator.
The operator f is extensive if x C f(z), reductive if f(z) C x and idempotent if
f(f(z)) = f(x). An operator is an upper closure if it is monotone, idempotent
and extensive and is a lower closure if it is monotone, idempotent and reductive.
A closure is an upper or a lower closure.

Abstract Domains A domain in the sense of abstract interpretation, is a com-
plete lattice equipped with monotone functions, called transformers, and non-
monotone operations called widening and narrowing for enforcing the conver-
gence of an analysis. We do not consider widening and narrowing. We use sig-
natures to compare transformers from different domains.

Fix a signature containing a set of symbols Sig with an arity function ar :
Sig — N. A domain A = (A,04) is a complete lattice A and a collection of
transformers fA : A (/) — A for each symbol in Sig. For notational simplic-
itly, the next definition uses unary transformers. A domain A = (A4,04) is an
abstraction of C = (C, O¢) if there exists a Galois connection (C, <) % (A,0)

such that for all f in Sig, a o f¢ T f4 o a. The best abstract transformer cor-
responding to f¢ is the function o o f€ o, which represents the most precise
approximation of a single application of f¢. A Sig-domain homomorphism is



a complete lattice isomorphism that commutes with transformers of the two
domains. A Sig-domain isomorphism is similarly defined.

Definition 1. Two abstractions A = (A,04) and B = (B,0p), of a concrete
domain C = (C,0¢), specified by Galois connections (C,<) % (A, Ca)

and (C, <) % (B,Cpg) are equivalent if there exists a domain isomorphism
h: A — B, satisfying that h(aa(c)) = ap(c) and ya(a) = yp(h(a)).

Process Algebra We use process algebra only for notational convenience in this
paper, and review it informally here. Let Act be a set of actions. The terms in
a standard process algebra [2] are generated by the grammar below.

Pi=a | P;Q | P+Q | P* | PQ

A process P may be an atomic action a, the sequential composition P; @ of two
processes, a choice P + () between two processes, the iteration P* of a process,
or the parallel composition P||Q of two processes.

3 Events as Abstractions

The contribution of this section is to show that various notions of an event arise
as abstract interpretations. We introduce a new domain of transition sequences,
the notion of an event abstraction, and a domain functor for constructing event
sequences from an event abstraction.

3.1 The Domain of Transition Sequences

Let Act be a set of actions and State be a set of states. A labelled relation on
State is a subset of Rel = State x Act x State. A transition (s, a,t) is an element
of a labelled relation in which s is the source, t is the target and a is the label.
Moreover, s is the predecessor of t and t is the successor of s.

The most detailed behaviour we consider for a system is sequences of transi-
tions. Transition sequences are not paths because the endpoints of transitions are
duplicated. We refer to (sg, ao, to), ($1,01,t1),- -+, (Sn—1,an—1,tn_1) as a transi-
tion sequence that has length n. The empty sequence € has length 0. The first and
last states in the sequence are sg and t,,—1, while (sg, ag, to) and (sp—1,a,tn—1)
are the first and last transitions. A transition sequence of length n is consis-
tent if adjoining target and source states coincide: ¢; = s;41 for all i < n — 1.
An inconsistent transition sequence is not consistent. The concatenation of two
transition sequences 7 and o is defined using the standard string concatenation,
denoted 7 - o, and abbreviated to 7o when no confusion arises. The sequence 7
is the prefix of 7o, denoted 7 < o, where < is the prefix order.

A labelled transition system (LTS) M = (State, Trans) consists of a set of
states and a transition relation Trans C Rel. A transition (s,a,t) is enabled
in a state s if (s,a,t) is in Trans. A transition sequence is feasible if it only



contains transitions from Trans and is infeasible otherwise. A path or history of
length n is a sequence sg, a1, S1,-..,0,—1,Sn—1, Which corresponds to a feasible,
consistent transition sequence (sg, a1, s1) ... (Sp—2,an—1, Sp—1). Feasibility and
consistency are unrelated as there exist transition sequences that infeasible and
consistent, and sequences that are feasible and inconsistent.

We recall the main properties of interest for verification, which are reach-
ability of states and the analogous property, firability of transitions. Let Initg
(Fing) C State be a set of initial (final) states. An initial transition is one that
is enabled in a state in Imitg. Some final state is reachable if there is a path
whose first state is in Initg and last state is in Fing. A history is firable if it
starts in a state in Initg. A transition is firable if it is the last transition of a
firable history. An action is firable if it is the label of a firable transition.

We introduce a domain of transition sequences, which consists of all possi-
ble sets of transition sequences and transformers for extending such sequences.
We write Rel” for the set of finite sequences of transitions. The lattice of transi-
tion sequences is (P(Rel”), C). The forward and backwards enabled transformers
en.,en. : P(Rel") — P(Rel) map from a sequence to the transitions enabled
either at the end or before the beginning of the sequence.

en.,(X) = {(s,b,t) | 7(r,a,s) € X and (s,b,t) € Trans}
en (X) ={(r,a,s) | (s,b,t)7 € X and (r,a,s) € Trans}

>

The transformers below are defined on P(Rel”) — P(Rel’).

>

st(X {U(s,a,t) | o € Rel,7(r,b,t) € X}

>

{a(s,a,t) | 0 € Rel”,7(s,a,t) € X}

ext(X) ={7(s,b,t) | 7 € X, (s,b,t) € en.,({7})}
ext_(X)={(r,a,8)7 | 7€ X,(r,a,s) € en_({T})}

(X)
tr(X)
(X)

The state closure transformer st extends X with all sequences that have the
same terminal state as some sequence in X. The transition closure transformer
tr extends X with all sequences that have the same terminal transition as some
sequence in X. These two closures serve two purposes: they allow for states
and transitions to be viewed as abstractions of sequences, and they allow for
reconstructing a transition system representation of a system from a domain en-
coding its behaviour. It is easy to reconstruct a transition system from transition
sequences, but the task is not as easy in an abstraction.

The forward extension transformer ext_, extends the end of a sequence with
transitions that respect the transition relation and the backward extension trans-
former ext._ extends a sequence backwards in a similar manner. The transformers
above are existential in that they rely on the existence of a sequence in their
argument or in Rel. These transformers have universal variants defined in the
standard way by complementation.

st =—oston tr=-otrom ert, =-oext,om ext_ =—o0ext_ om



Proposition 1. The transformers of the transition sequence domain are mono-
tone and satisfy the following properties.

1. There is a Galois connection between ext_, and e::\n?fe.
2. There is a Galois connection between ext_ and ext_, .
8. The transformers st and tr are upper closure operators.

Let Init7 and Fint be sets of initial and final transitions. The standard
characterizations of reachability of final states from initial states lifts below to
histories as the following fixed point: Ifp x. Inity U ext_ (x).

3.2 Events as Abstractions
We illustrate different notions of an event that may arise from a single system.

Ezample 1. The LTS below represents the operational semantics of the term
*
((a]|b) - a) . The initial state of this system is r.

We consider five different notions of an event. An
event as a firable history corresponds to treat-
ing nodes in a computation tree as events. This
notion is history- and interleaving dependent, so
(r,a, s)(s,b,u) and (r,b, t) represent different events.
A prime event, which we name after the notion used
in prime event structures, is history-dependent but
interleaving-independent. An event respects history
but disregards concurrent scheduling differences.

Thus, the sequences (r,a,s)(s,b,u) and (r,b,t) represent the same event be-
cause (r,a, s) does not causally precede (s,b,u). However, the sequences (r,b,t)
and (r,a,s)(s,b,u)(u,a,r)(r,b,t) represent different events because the longer
sequence has a history that is not due to concurrent interleaving alone.
Viewing transitions as events leads to a history-independent, interleaving-
dependent notion. An independent transition, is an equivalence class of transi-
tions that does not distinguish between transitions that arise due to scheduling
differences. For example (r,b,t) and (s,b,u) are equivalent, and (r,a,s) and
(t,a,u) are equivalent, leading to three events in this example. A Mazurkiewicz
event is an action, so this system only has two Mazurkiewicz events. <

We formalize events as Boolean abstractions of transition sequences. The
prefix condition in Definition 2 is used later to construct event sequences.

Definition 2. Let M = (State, Trans) be a LTS with transition sequences Rel”.
An event abstraction Ev, parameterized by a set Fvent, satisfies these conditions.

1. There is a Galois connection (P(Rel’),C) % (P(Event), C).

2. The concretization is a homomorphism with respect to |, () and complement.



3. If agy({c}) # 0 and 7 <X o, for non-empty T, then ag,({7}) # 0.
The event abstraction is total if ve,({e}) # vev (D) for every event e.

The first condition above asserts that events are abstractions of sequences
of transitions. The second condition ensures that a set of transition sequences
of interest can be partitioned into the events they generate and that a concrete
transition sequence maps to at most one event. The concretization conditions are
weaker than the requirement that g, is a homomorphism of Boolean algebras
because the condition g, () = () is missing. This is because a transition sequence
7 may not map to an event. In an event abstraction in which ag, ({7}) # 0 exactly
if 7 is a firable history, g, (@) will contain exactly the infeasible sequences.

Lemma 1. For every transition sequence 7, ag,({7}) C {e} for some event e.

We give an alternative characterization of events by equivalence relations, as
this formulation is sometimes convenient to use. Recall that a partial equivalence
relation (PER) on a set S is a symmetric, transitive, binary relation on S. Unlike
an equivalence relation, a PER is not reflexive. The quotient S/= contains of
equivalence classes of S with respect to = and [s]= is the equivalence class of s.
As = is not reflexive, [s]= may not be defined.

A PER on transition sequences is prefiz-closed if whenever 7 = o and there
exists 7/ such that 7’ < 7, there exists ¢’ such that 7/ = ¢’. Note that there is no
requirement that o’ be a prefix of 0. A PER = generates a lattice ((P(Rel* /=), Q)
of equivalence classes of sequences. This lattice is an abstraction of transition
sequences as given by the functions below.

az(X) = {[s] | s € X,s = s} WE(X)ﬁ(UX)U{sM;,—és}

The abstraction replaces sequences by equivalence classes while the con-
cretization is the union the contents of equivalence classes and those sequences
on which equivalence is not defined. Lemma 2 shows that prefix-closed PERs and
total event abstractions are equivalent ways of defining the same concept.

Lemma 2. FEvery total event abstraction is isomorphic to the abstraction gen-
erated by a prefiz-closed PER.

Ezxample 2. A PER for the prime event abstraction in Example 1 is the least PER
over firable histories satisfying these constraints: € = e, 7 = 7 for all firable histo-
ries 7 and for all 7 = o, 7(r,a,s) = o(r, b, t)(t,a,u), 7(r,b,t) = o(r,a,s)(s,b,u).
Note that the concatenations above must produce firable histories. <

Since the event abstractions operates over a powerset lattice (of events or
equivalence classes of transition sequences), we can relate several event abstrac-
tions. In Figure 1, we illustrate the relationship between the several event ab-
stractions described in Example 1. The No Events abstraction simply abstracts
any transition sequence to the empty set.



Firable Histories
Prime Events Transitions

‘\

Independent Transitions

T

Actions

T

No Events

Fig. 1. Relationship between event abstractions.

3.3 The Event Sequence Domain Functor

Events represent an abstract unit of behaviour. The evolution of a system over
time has different representations, including as partial orders on events [23] or
relations between sets of events [10]. We model behaviour as sequences of events.
We introduce a domain functor for generating a domain of event sequences from
a domain of events. This domain exploits the prefix-closure condition of Defini-
tion 2 to derive event sequences from transition sequences.

Ezample 3. Consider the sequence o = (r,a,s)(s,b,u)(u,a,r)(r,b,t) from the
system in Example 1. When firable histories define events, each prefix of ¢ of
length n represents a unique event e,,. In particular ag,({c}) = {es}. The se-
quence o can be viewed in terms of the events fired along it: ejesesey. <

The functor ESeq(-) maps an event abstraction P(Rel") <Z_;E> P(Event) to
the event sequence abstraction ESeq(Ev) defined below. When clear from context,

we write ESeq for ESeq(Ev). The lattice of event sequences is (P(Event ), C). The
abstraction and concretization maps are given below.

OESeq ’P(Rel - P( Event” )

{e} ifo=¢
(VESeq {U} 0 if ag, {0} =0
{r"-elecar({o}), 7" € agseq({0'}), 0 = 0'(5,b,t)}, o.w.

VESeq : ?(Event — P(Rel )
R if o =
Yesea({0}) = {{6} no=c

{7(s,b,t) | 7(s,b,t) € Yev(€), T € YESEq({0”'}),0 = 0’€} o0.w.

aESeq(X) = U aESeq({T}) ’YESeq(X) = U ’YESeq({U})

TEX oceX



The concretization map goes from a sequence of events to those transition se-
quences whose prefix closure generates exactly the same event sequence. The
enabled event transformers enESea, enESea : P(Eyent”) — P(Event) map an event
sequence to events enabled at the beginning or end.

en=9(X) = [ {ae({a(5,0,)}) | (5,b,t) € en_.({0}), 0 € Yeseq(X)}
enEseq(X) = U {aEV({(r,a, 3)}) ‘ (T,CL,S) € en*(’YESeq(X))}

Forward enabledness constructs the enabled event by concatenating it with its
history, but backwards enabledness is simply the event abstraction of a transi-
tion. The extension transformers concatenate a sequence with an enabled event.

>

eatS9(X) = {oc | 0 € X, e € en®9({o})}
extESeq(X) = {60 |oeX,ec enEseq({U})}

—

We define a few event abstractions below.

Histories The set of histories Hist consists of feasible, consistent transition se-
quences. The event abstraction Hist maps every history to itself and ignores
other sequences. The least fixed point providing firable histories when evaluated
on event sequences will concretize to the set of firable histories, representing the
unfoldings of a transition system.

Transitions The domain Tr uses transitions in Rel as events with maps o (X) =
{(r,a,s) | o(r,a,s) € X}) and vy (Y) = {o(r,a,s) | (r,a,s) € Y}. The domain
ESeq(Tr) of event sequences is equivalent to the domain of transition sequences.
The use of prefixes in agseq and Yeseq is necessary for this equivalence to arise.
A simplistic lifting of events to event sequences that ignored prefix information
would not lead to this equivalence.

Actions Consider Act to be the set of events and Act as the domain with
apact(X) ={a | o(r,a,s) € X}, and yace(Y) = {a(r,a, s)€Rel” |ac Y}. The
event sequences generated by the domain functor correspond to the language ab-
straction of the system, where only the sequence of labels is retained and not the
underlying states. The least fixed point of firable sequences generates the Hoare
language for a system [22].

4 Independence as an Abstraction

Independence information is used in a model of concurrency to distinguish the
situation in which an event precedes another due to a scheduling choice from
that in which the precedence is due to causal dependence. The contribution of
this section is a function modelling independence and a functor for generating
an abstraction from it.



10

Ezample 4. This example shows how concurrent behaviours beyond the scope of
Mazurkiewicz traces and prime event structures fit into our framework. We rep-
resent which events may fire concurrently by a function Ind from event sequences
to sets of sets of events.

Consider a system with three events a, b, ¢ in which every two events may oc-
cur simultaneously but all three may not. This situation, called a ternary conflict,
can be modelled by a function Ind;(e) = {{a,b},{a,c},{b,c},{a},{b},{c}}
expressing which events may fire concurrently.

Suppose instead that all three events may fire but only a and ¢ may fire
concurrently, we have a binary conflict between a and b and between b and
c. Further, if a and b can fire concurrently once ¢ has occurred, the conflict
is tramsient or is said to be resolved by c. To model this situation, consider
Inda(e) = {{a,c},{a},{b},{c}}, encoding the initial conflict, and Ind(c) =
{{b,c},{a},{b},{c}}, encoding the situation after c fires. <

Definition 3. An independence function Ind : Event — P(P(Event)) from
event sequences to the set of sets of events that may fire independently after that
sequence is one that satisfies the following conditions.

1. For all o and e € Event,{e} € Ind(o).
2. For allo and X € Ind(o) if Y C X, then Y € Ind(o) must hold.
3. Forallo, X € Ind(0), e € X, there is Y € Ind(oe) such that X \ {e} CY.

The first condition expresses that a singleton set of events is an independent
set irrespective of the current event sequence. The second condition states that
if a set of events can occur concurrently, every subset of those events can also
occur concurrently. Thus, we exclude for this paper models based on distributed
protocols that require a specific number of participants. The third condition
expresses that if a set of events can potentially fire independently, firing some
of them will not disable the others. Note that these events may not be enabled
at the particular event sequence as the independence function only represents
a may fire concurrently relation. Futher, these events may still be disabled by
an event external to the set. The notion of independence above is a functional
representation of the local independence of [12] and generalizes many notions of
independence in the literature.

Though independence has syntactic similarities to enabledness, it is funda-
mentally different. Enabledness is a property of a given system while indepen-
dence may be viewed either as a property of a system or just of actions. In
the context of programs, if atomic statements are treated as events, enabledness
dictates which statements of the program may fire but independence dictates
which statements of the programming language may execute concurrently. The
next definition defines an equivalence on sequences based on independence. Let
perm(S) represent all permutations of a finite set S.

Definition 4. The independence equivalence =j,q generated by Ind : Event —
P(P(Event)) is the least (total) equivalence relation satisfying these conditions.



11

1. For allo, X € Ind(o) and 71,7 € perm(X), 071 =g 0T2.
2. If 01 =1nq 02, then for all 7, 017 =1nq 02T.

We introduce an independence domain functor Ind that generates a domain
Ind(Ev, Ind) given an event abstraction and an independence function. The lat-
tice of independent sequences (P(Event /=pmq),C) is the powerset of equiva-

lence classes of independent traces, which abstracts P(Event ).

and(X) = {[o]=,, | 0 € X} ’7'”d(X)£UX

The enabledness transformer on the domain of independent sequences is not a
simple lifting because it considers contiguous sequences of independent events
that may occur in the future of a sequence and allows for them to fire at the
beginning.

Ezxample 5. Suppose a system has three events a, b, ¢, which are permitted to fire
concurrently. Suppose the only trace in the system is abc. As adjoining events
are independent, the equivalence class of abc under independence contain all
permutations of the events. However, the only event enabled by the concrete
system is a, so the only abstract event that would be enabled is [a]. To make
the concurrently enabled events explicitly visible, we need that [a], [b] and [(]
are all enabled in the abstract before any have fired. <

We use a helper function iext_, : Event™ — ‘.P(Event*) which maps a se-
quence to possible extension consisting only of independent events. The abstract
*
enabledness function en'™ : P(Event /=r,q) — P(Event) is also given below.

iext_ (o) = IfpX. en®>9({o}) U {re|TeX,ec en5({o7}),

for some Y € Ind(c) and 6 € perm(Y), e < 6}
en™(X) = {e | for some [o]=,, € X,T € iext_(0),ed € [1]=,,}
ext"(X) = {[oe]=,, | e € en™({[o]=,..}). [0]=,.. € X}

Ezample 6. Revisit the system in Ex. 5. Ind(e) = P({a, b, c}), with the function
on event sequences satisfying the required constraints. The steps in the fixed
point computation of iext_,(g) are {a}, due to the initial enabled event, then
{a,ab}, then {a,ab,abc}. The set en™({c}) = {a,b,c}. <

Binary Independence Relations Independence in the theory of Mazurkiewicz
traces [13], is a irreflexive, symmetric, binary relation on events. The relation
need not be transitive. This instance is of particular importance as it arises in
several models of concurrency, namely trace theory, prime event structures with
binary conflict and transition systems with independence.

A binary independence relation I generates an independence function that
maps every sequence to singleton sets and the sets that contain pairwise inde-
pendent events.

Indi(c) ={Y C Event | |[Y| =1 or for every e,e’ € Y. e I €'}



12

Lemma 3. Ind; is an independence function.

This independence function is static as it yields the same independent sets
of events irrespectively of the event sequence. Thus, it is clear that a binary
independence relation is not sufficient to model ternary or transient conflicts.

Independence Abstraction and Reduction There is an important distinc-
tion between the independence abstraction in this work and the notion of inde-
pendence already inherent in a semantic model of a concurrent system.

Our independence abstraction extends a transition system so that its be-
haviour is modelled by a particular model of concurrency with respect to a
specified event abstraction and independence function. However, there is a set of
valid independence functions associated per model of concurrency. A given LTS
has several representations within a model of concurrency, dependending on the
event abstraction and the associated independence function. We now illustrate
how the event abstraction defines a basic independence function. Using such in-
dependence functions we obtain complete abstractions in that our abstraction
would not add any behaviour.

Ezample 7. Consider the transition system in the Figure below. The initial state
of this system is r.

This LTS can be a representation of the term

(a-b)+ (b-a) or a | b. In the former, the event
b abstraction is represented by a set composed of
u four events: {ai,az,b1,ba}, where t; represents the

ocurrence of the transition ¢ in a path at the i-th
position of the path. In this case, the only indepen-

“ dence function that yields a complete abstraction is
b the one that maps any event sequence to singleton
sets as two events are never concurrently enabled.

Declaring the events a; and b; independent will abstract the LTS to the
term (a || b) + (a - b) 4+ (b- a). In the case where the LTS is meant to represent
the term a || b, the event abstraction is represented by a set composed of two
events:{a, b}. In this case, the independence function is constrained to declare
the event a independent with the event b. <

This observation on completeness is the foundation for algorithmic techniques
such as partial order reduction or model checking with representatives [16]. In
that view, the equivalence classes generated by an independence function can
be used to construct a reduced LTS from the representatives of these equivalent
classes. The resulting reduced LTS is complete for certain properties of interest
such as deadlock detection. In that case, the independence function is used a
reduction. An important question is whether it exists a largest independence
function, i.e. the valid independence function that generates the smallest number
of equivalence classes and if we can devise pratical methods to compute it. Our
independence abstraction is complete in the following sense:



13

Let M be a concrete LTS, Mg the reduced LTS generated by some indepen-
dence function Ind, and N the abstract LTS generated by the same independence
function. It is the case that both M and N have the same set of traces.

Ezxample 8. Consider the LTS in Example 5 that only has one trace abc.

C
\:b _____ *\ b This rTs is depicted in the figure as
. N the solid path from state s to state z.
a ”*T”** The history preserving event abstrac-

! tion generates a set with three events

L, e {a,b,c}. The independence abstraction in-

\bA w Ny duced by the independence function in Ex-
ample 5 generates the equivalence classes of

traces {{abc, bac, acb}}.

The abstract LTS is the dashed completion of the trace into the cube in the figure.
Observe that the initial LTS is a reduction of the cube LTS which is generated by
the same independence function and a choice of abc as the representative of the
equivalence class. <

5 Instances of Independence Abstractions

The contribution of this section is to demonstrate that models of concurrency
arise as compositions of an event abstraction and an independence function. For
the remainder of this section, we define independence as a relation between a set
of events Fvent.

‘We now describe the abstraction of this independence function in three mod-
els of concurrency: Mazurkiewicz traces, prime event structures and transition
systems with independence. The case of asymmetric conflict is analogous as the
same independence function is valid for an asymmetric independence relation.

Mazurkiewicz Abstraction and Pomsets We are immediately in the setting
of trace theory if we consider the set of events FEvent as the alphabet and the
independence relation as an irreflexive and symmetric relation over events. In
this case, the abstraction is simply the Parikh equivalence where equivalent
sequences are permutations of words in the language theoretic sense.

Ezxample 9. Consider the event sequence abc and the independence relation as
the symmetric closure of the relation a I b and b I c¢. The trace abstraction will
generate the equivalence classes {{abc, bac, acb}}. <

Unlike the Mazurkiewicz trace abstraction, there is no requirement to ab-
stract actions as events, so multiple events may have the same label. A sequence
of events ey, ...e, represents a linear order e; < --- < e,. An equivalence class
[0]=,.., Tepresents the partial order generated by the intersection of all linear
orders in that class. Since multiple elements of the partial order may have the



14

same label, this representation of the equivalence class is called a partially or-
dered multiset or pomset [19].

Prime Event Structures A prime event structure (PES) is a tuple & =
(Bvent, <,#) where < C Fvent x Event is a strict partial order on Event, called
causality relation, and # C Event x Fvent is a symmetric, irreflexive conflict
relation, satisfying

— for all e € Event, the causes of e, [e] := {e’ € Event: ¢’ < e}, is a finite set
— for all e, e/, e” € Event, if e # ¢’ and ¢’ < €”, then e # e

The central concept in a PES is that of a configuration. A configuration of £
is any finite set C' C FEvent satisfying:

— (causally closed) for all e € C' we have [e| C C;
— (conflict free) for all e, e’ € C, it holds that (e # ¢).

We denote by Conf(E) the set of configurations of £.

We consider the prime event structures where the configurations represent
the equivalence classes of the independence abstraction. It is straightforward to
see that given an event sequence o, the independence abstraction will generate an
equivalence class composed of permutations of o and that the intersection of each
event sequence in the equivalence class (when seen as a total order) generates
a partial order. This partial order is in fact a representation of a Mazurkiewicz
trace. Thus, when the conflict relation is generated by the complement of the
independence relation, there is a bijection between Mazurkiewicz traces and
configurations of a prime event structure.

Ezample 10. The prime event structure below (on the left) represents the partial
semantics of the term a-((b-c¢)+(d-e)). In the representation of event structures,
two events are in conflict if there is a dashed line between them. Also, for the
sake of clarity, we only represent immediate conflicts. Two events e, e’ are in
immediate conflict, e #° €, iff e # € and both [e] U [¢/] and [e] U [e'] are
configurations.

- \\

Note that the event b is in conflict with every sucessor of d, and vice versa.
Also, note that if b I e, then the same prime event structure is a representation
of the system. For the remainder of this example, we consider that b is not
independent with sucessors of d and vice versa. The independence abstraction
that arises by considering b I d over this prime event structure amounts to
removing the conflict between b and d (prime event structure in the center).



15

However, note that the independence abstraction does not simply amount to
removing conflicts. In particular, the independence abstraction over the prime
event structure in the center that considers a I b and a I d removes the causality
between those events (prime event structure in the right). <

Transition Systems with Independence We now study the independence
abstraction in transition systems with independence [22]. This model of concur-
rency has the characteristic of defining events as a derived concept, in particular
as equivalence classes of transitions generated by an independence relation on
transitions. Thus, this independence relation is used in the event abstraction
directly and used in the independence abstraction by lifting the relation over
the generated events.

Definition 5. A labelled transition system with independence (TSI) is a struc-
ture T = (Mrp, IT) where My is a labelled transition system and I C Rel X Rel
1s an independence relation, an irreflexive, symmetric binary relation such that,
using < to denote the following binary relation on transitions

(S’a781) = (SQ,CL,U) —
b € Act. (s,a,$1) It (s,b,s2) and
(s,a,s1) It (s1,b,u) and
(s,

$,b,82) It (s2,a,u)

and ~ the least equivalence relation on transitions which includes <, we have

Ty. (s,a,s1) < (s,a,s2) implies s1 = Sa;

Ts. (s,a,s1) IT (8,0, s9) implies Ju. (s,a,s1) It (s1,b,u) and (s,b, s2) It (s2,a,u);
T3. (s,a,s1) IT (s1,b,u) implies Isa. (s,a,s1) It (s,b,82) and (s,b,82) I (s2,a,u);
Ty. (s,a,81) ~ (s2,a,u) It (w,b,w’) implies (s,a,s1) It (w,b,w").

The event abstraction is generated by the PER ~. Intuitively, an event corre-
sponds to a set of transitions associated with the same action. These transitions
are equivalent with respect to some property captured by the independence re-
lation. Observe that < is not a partial order.

Ezxample 11. Recall the transition system of Example 7 bellow that represents
the term (a - b) + (b - a). The initial state of this system is r.



16

In this initial case, the independence relation is
empty as the TSI represents the mutual exclusion
between actions a and b. The event abstraction
b generates one event per transition and the indepen-
dence relation on events is also the empty relation.
Thus, the set of event sequences of this system
is {&,a,b,ab’,ba’} where the z’ denotes the second

S]
(~)
)

¢ transition of label x. If we consider the case where
b transitions labelled by action a are independent, we
obtain the same event and independence abstrac-

tion.

Finally, the case where the independence matches to one in Definition 5, the
system represents the operational semantics of the term a || b. In this case, the
event abstraction generates a set with two events a and b, and the independence
relation on events considers these events independent. <

Ezample 12. The independence abstraction for TSI is a completion of the under-
lying transition system with respect to the concurrency diamonds specified by
the independence relation. Consider the following TSIs up to the dashed arrows.

The transition system on the left represents the term a + b while the one
on the right represents the term a - b. If we consider the transition associ-
ated with action a independent with the transition associated with b, these
systems are not T'SIs as they do not satisfy, respectively, 72 and T'3. The struc-
tures T = (My, IT) where My is a labelled transition system and It C Rel X Rel
is a symmetric binary relation are called pre-transition systems with indepen-
dence. The independence abstraction extends a pre-transition system with inde-
pendence into the minimal valid TSI which correspond to extending the pre-TSIs
with the dashed arrows. It is clear that these completions are analogous to the
ones described in the prime event structure case: the left completion corresponds
to removing the conflict between events a and b, and the right completion cor-
responds to removing the causality between events a and b. <

Beyond binary independence. In order to express ternary conflict as in the exam-
ple 4, we consider ternary independence relations C Fvent X o x Event. Lifting
the independence function defined previously is straightforward.

For more expressive models able to model more refined behaviour such as n-
ary conflicts we assume that the independence function Ind is provided as input.



17

It is known that models of computation that can represent such behaviours lead
to redundancies in the representation when one uses models that are more suited
for binary, symmetric independence relations such as prime event structures [10].

6 Related Work

There is a significant body of work devoted to comparing and translating be-
tween models for concurrency. For example, see [15] for a uniform approach to
compare net classes, [1] for a survey on process algebras, [5] for a comparison and
translations between Mazurkiewicz traces and other models, [22] for a categor-
ical study between transition systems with independence and event structures
and [10] for configuration structures, a general characterization of event models
where the notion of state is represented with a set of events, called configuration,
that respects certain axioms.

The observation that independence is an abstraction is implicit in the original
paper [22] that introduces transition systems with independence. In particular,
this observation stems from the realization that the state quotient abstraction
over a TSI does not necessarily produces a (deterministic) TSI and a completion
procedure over a more specialized domain is provided. We have evidence from the
lack of methods that combine data abstractions with partial order methods that
the phenomenon of counter-intuitive interaction between standard abstractions
and independence is important and understudied.

Furthermore, although the idea that events as a derived notion and indepen-
dence are related, we are not aware of an in-depth study or application of ab-
straction interpretation theory that precisely formalizes the idea of independence
as abstraction and provides a systematic separation between these concepts.

Conclusion In this paper, we examined the notions of event and independence,
two distinct but related aspects in the representation of concurrent behaviour,
as abstractions of a fine-grained semantics of a system. We showed that vari-
ous notions of systems behaviour arise as abstract interpretations where events
are Boolean abstractions of transition sequences. Futhermore, we showed how
this event abstraction defines an independent domain functor over the domain
of event sequences. Thus, we precisely formalize independence as an abstrac-
tion and described known models of concurrency such as Mazurkiewicz traces,
Winskel prime event structures and transition systems with independence using
our framework.

References

1. Baeten, J.C.M.: A brief history of process algebra. Theor. Comput. Sci. 335(2-3),
131-146 (May 2005)

2. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. In-
formation and Control 60(1-3), 109-137 (1984)



18

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Boudol, G.: Flow event structures and flow nets. In: Semantics of Systems of Con-
current Processes, LITP Spring School on Theoretical Computer Science, La Roche
Posay, France, April 23-27, 1990, Proceedings. pp. 62-95 (1990)

Cousot, P.: Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. Theoretical Computer Science 277(1-2), 47-103 (Apr
2002)

Diekert, V.: The Book of Traces. World Scientific Publishing Co., Inc., River Edge,
NJ, USA (1995)

Esparza, J., Heljanko, K.: Unfoldings — A Partial-Order Approach to Model Check-
ing. EATCS Monographs in Theoretical Computer Science, Springer (2008)
Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking
software. In: Principles of Programming Languages (POPL). pp. 110-121. ACM
(2005)

Fokkink, W.: Introduction to Process Algebra. Springer (2000)

van Glabbeek, R.: The linear time — branching time spectrum I. the semantics
of concrete, sequential processes. In: Bergstra, J., Ponse, A., Smolka, S. (eds.)
Handbook of Process Algebra, pp. 3 — 99. Elsevier (2001)

van Glabbeek, R.J., Plotkin, G.D.: Configuration structures, event structures and
petri nets. Theor. Comput. Sci. 410(41), 4111-4159 (2009)

Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems
— An Approach to the State-Explosion Problem, LNCS, vol. 1032. Springer (1996)
Kuske, D., Morin, R.: Pomsets for local trace languages. J. Automata Languages
and Combinatorics 7(2), 187-224 (Nov 2001)

Mazurkiewicz, A.: Trace theory. In: Petri Nets: Applications and Relationships to
Other Models of Concurrency, LNCS, vol. 255, pp. 278-324. Springer (1987)
McMillan, K.L.: Using unfoldings to avoid the state explosion problem in the veri-
fication of async. circuits. In: Proc. CAV’92. LNCS, vol. 663, pp. 164-177. Springer
(1993)

Padberg, J., Ehrig, H.: Parameterized net classes: A uniform approach to petri net
classes. In: Unifying Petri Nets, Advances in Petri Nets. pp. 173-229 (2001)
Peled, D.A.: Partial order reduction: Model-checking using representatives. In:
Mathematical Foundations of Computer Science. pp. 93-112 (1996)

Petri, C.A.: Fundamentals of a theory of asynchronous information flow. In: IFIP
Congress. pp. 386-390 (1962)

Pinna, G.M., Poigné, A.: On the nature of events: Another perspective in concur-
rency. Theor. Comput. Sci. 138(2), 425-454 (1995)

Pratt, V.: Modeling concurrency with partial orders. International Journal of Par-
allel Programming 15(1), 33—71 (1986)

Pratt, V.R.: Event-state duality: The enriched case. In: CONCUR, 2002 - Concur-
rency Theory, 13th International Conference, Brno, Czech Republic, August 20-23,
2002, Proceedings. pp. 41-56 (2002)

Rodriguez, C., Sousa, M., Sharma, S., Kroening, D.: Unfolding-based partial order
reduction. In: Concurrency Theory (CONCUR). Leibniz International Proceedings
in Informatics, vol. 42, pp. 456-469. Dagstuhl Publishing (2015)

Sassone, V., Nielsen, M., Winskel, G.: Models for concurrency: Towards a classifi-
cation. Theoretical Computer Science 170(1-2), 297-348 (1996)

Winskel, G.: An introduction to event structures. In: School/Workshop on Linear
Time, Branching Time and Partial Order in Logics and Models for Concurrency.
pp. 364-397 (1988)



