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Abstract. Web services are highly distributed programs and, thus, are prone to
concurrency-related errors. Model checking is a powerful technique to identify flaws
in concurrent systems. However, the existing model checkers have only very limited
support for the programming languages and communication mechanisms used by
typical implementations of web services. This chapter presents a formalization of
communication semantics geared for web services, and an automated way to ex-
tract formal models from programs implementing web services for automatic formal
analysis. The formal models are analyzed by means of a symbolic model checker
that implements automatic abstraction refinement. Our implementation takes one
or more PHP5 programs as input, and is able to verify joint properties of these
programs running concurrently.

5.1 Introduction

Web services are instantiations of service-oriented architectures, where a ser-
vice is a function that is well defined, self-contained and does not depend on
the context or state of other services [1]. They are designed to be published,
accessed and used via intranet or Internet. The elements of the design are (1)
a service provider, which offers some service; (2) a service broker who main-
tains a catalog of available services; and (3) service requesters which seek for
a service from the service broker, and then attach to the service provider by
composing the offered services with its own components. A web service offers
an arbitrary complex functionality, which is described in a global system struc-
ture. Examples of web services include information systems such as map or
travel services, e-commerce systems such as web shops, travel agencies, stock
brokers, etc. Clearly, it is essential to enforce security and safety requirements
in the development of such systems.

Web services are typically implemented in a very distributed manner and,
thus, are prone to errors caused by the distribution. They often involve mul-
tiple parties. As an example, consider an online shop that accepts charges
to a credit card as form of payment. The parties involved are the users or
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customers, the vendor itself, and back-office service providers, e.g., the pay-
ment clearing service. The authorization of the payment is given by a service
company for credit card transactions, whereas the “shopping basket” and
warehousing are implemented by the vendor. It is easy to imagine another
party involved in a transaction, e.g., a company that performs the actual
shipment.

Each party typically employs a large set of machines for the purpose of load
sharing. The safety and security requirements are often global, i.e., require
reasoning about multiple parties and may involve more than one server at
each party.

A typical scenario is depicted in Fig. 5.1. A merchant is operating three
hosts (e.g., for redundancy or load-balancing reasons). Two of these hosts
(‘Host 1’ and ‘Host 2’) are used to run a web server, e.g., Apache. The web
server itself is split up into multiple processes, T1, . . . , T4. The web server
processes have joint access to a shared database, e.g., using the SQL protocol.
This database is assumed to be the only form of communication between
the server processes. The server processes may contact a third party, e.g.,
to authorize a payment. Incoming client requests are modeled by means of
processes T5 and T6.

Analyzing software that implements such services, therefore, requires rea-
soning about many programs running in parallel. Concurrent software is noto-
riously error-prone. Approaches based on testing often fail to find important
concurrency bugs.
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Fig. 5.1. A typical scenario —A merchant operating multiple machines offering a
service to multiple clients, and communicating with a third party
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Model checking [2, 3] is a formal verification technique. It has been shown
to be especially useful for verifying concurrency-related properties, and iden-
tifying bugs related to process schedules. In the context of web services, there
are manifold properties that model checking can be used to verify:

• Safety properties, e.g., that no exceptions are thrown by the code, that
the code is free of data races, or that certain security properties hold.

• Liveness properties, e.g., that the code does not get into a state in which
it deadlocks or livelocks.

However, model checking suffers from the state explosion problem. In case
of BDD-based symbolic model checking, this problem manifests itself in the
form of unmanageably large BDDs [4]. In case of concurrent software, the
state–space explosion problem comes from two sources: (1) The model checker
has to consider manifold interleavings between the threads, and (2) software
usually operates on a very large set of data variables.

The principal technique to address the first problem is partial order re-
duction [5]. The principal method for addressing the large amount of data is
abstraction. Abstraction techniques reduce the state space by mapping the
set of states of the actual, concrete system to an abstract and smaller set of
states in a way that preserves the relevant behaviors of the system. The use of
abstraction on transition systems is formalized by the abstract interpretation
framework [6].

Predicate abstraction [7, 8] is one of the most popular and widely ap-
plied methods for systematic abstraction of programs. It abstracts data by
only keeping track of certain predicates on the data. Each predicate is rep-
resented by a Boolean variable in the abstract program, while the original
data variables are eliminated. Verification of a software system with predicate
abstraction consists of constructing and evaluating a finite-state system that
is an abstraction of the original system with respect to a set of predicates.

Typically, this abstract program is created using Existential Abstrac-
tion [9]. This method defines the instructions in the abstract program so
that it is guaranteed to be a conservative over-approximation of the original
program for reachability properties. Thus, in order to show that no erroneous
state is reachable, it is sufficient to show that the abstract model does not
contain it.

The drawback of such a conservative abstraction is that when model check-
ing of the abstract program fails, it may produce a counterexample that does
not correspond to any counterexample of the original program. This is usually
called a spurious counterexample. When a spurious counterexample is encoun-
tered, refinement is performed by adjusting the set of predicates in a way that
eliminates this counterexample from the abstract program. This process is
iterated until either a counterexample is found, or the property is shown. The
actual steps of the loop follow the counterexample guided abstraction refine-
ment (CEGAR) framework.
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The CEGAR framework has been implemented in most software model
checking tools (e.g., Slam [10, 11], MAGIC [12], BLAST [13], SatAbs [14]).
The existing software Model Checkers, however, are not readily applicable for
most programs implementing web services. This is due to the fact that the
existing tools lack support for the programming languages and the communi-
cation primitives used for web services.

A number of programming languages has been designed specifically for
implementing web services. The commonly used programming languages for
web-applications are WSDL, BPEL, PHP [15], and ASP [16]. While in general
their goal is to provide the programming constructs for the implementation
of web services, they differ in the level at which they address the web service
operations. For example, BPEL [17] has been developed to specify interaction
protocols (synchronous and asynchronous) between web services. BPEL is
also a high-level language for implementing web service applications, and is
supported by the most industrial players in the field (IBM, Oracle, BEA). It is
designed for specifying the communication among service participants and its
users. Its disadvantage is that it does not support the low-level implementation
details of the service functionality.

Among the programming languages that support low-level details of web
service implementations are ASP and PHP. ASP (Active Server Pages) is
based on either Visual Basic Script or JScript. ASP is a proprietary system
that is natively implemented only on Microsoft Internet Information Server
(IIS). There are attempts of implementations of ASP on other architectures,
e.g., InstantASP from Halcyon and Chili!Soft ASP. Formal models of ASP
scripts are difficult to generate as ASP permits full access to the WIN32 API,
which offers an enormous amount of functions.

The other commonly used programming language for web applications is
PHP, a scripting language specialized for the generation of HTML, server-
side JAVA, Microsoft’s ASPx, and more recently, C# as part of .NET. PHP
is an interpreted programming language that has a C-like syntax. The most
commonly used platform for PHP is the Apache web server, but there are
implementations for IIS-based servers as well.

A large number of tools and techniques for modeling and model checking
BPEL processes have been developed (see e.g., [18, 19, 20, 21, 22, 23, 24,
25]). They focus on analyzing the interaction protocols, the orchestration,
and the composition of web services. They are not applicable, however, to
verifying the actual applications that implement the web services due to the
restrictions of the BPEL notation. As far as the verification of the actual
implementations of web services, there are no tools available yet. Moreover,
to the best of our knowledge there are no implementations of the abstraction-
refinement framework available for any of the languages that are typically
used for implementations of web services.

While there are model checkers for concurrent Java, the concurrency is
assumed to be implemented using the Java thread interface. Communication
between the processes is assumed to be implemented by means of shared
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data. In contrast to that, programs implementing web services are usually
single threaded. The concurrency arises from the fact that there are multi-
ple instances of the same single-threaded program running. Communication
between the processes is typically implemented by either

1. TCP sockets using protocols such as HTML or XML, or
2. shared databases using query languages such as SQL.

Note that the two communication primitives above have different seman-
tics: in the context of web services, communication through a TCP socket is
usually done in a synchronous, blocking way i.e., after sending data, the send-
ing process usually waits for an acknowledgment by the receiver and, thus, is
blocked until the receiving process accepts and processes the message.

In contrast to that, database accesses are usually performed independently
by each process. Blocking is avoided in order to obtain scalability in the num-
ber of database clients. While the SQL protocol itself is blocking, the com-
munication between processes through a shared database has asynchronous
semantics. Thus, the interleavings of competing accesses to the database be-
come relevant.

Returning to the scenario described above (Fig. 5.1), shared databases are
usually only accessible within the realm of a single party. Links to external
parties (clients, third-party service providers) are typically implemented using
synchronizing protocols such as SOAP.

Formal reasoning about global properties of web services requires identi-
fication and modeling of both of these communication primitives. In particu-
lar, support is needed for both synchronions and asynchronous inter-process
communication. None of the existing software model checkers provides such
support.

We propose to use Labeled Kripke Structures (LKS) as means of modeling
web services: LKSs are directed graphs in which states are labeled with atomic
propositions and transitions are labeled with actions. The synchronization
semantics is derived from CSP (Communicating Sequential Processes), i.e.,
processes synchronize on shared events and proceed independently on local
ones. The formalism supports shared variables. Once the formal model is
extracted from the implementation, the web service becomes amenable to
formal analysis by means of model checking [26].

5.1.1 Contribution

This chapter addresses a problem of verifying the applications that implement
the web services and develops techniques for modeling and verification of low-
level languages used for the implementation of web services.

We formalize the semantics of a PHP-like programming language for web
services by means of labeled Kripke structures. We use a computational model
that allows both synchronizing and interleaving communication. Previous
models are limited to either synchronous or asynchronous inter-process com-
munication. Once the model is obtained, automatic predicate abstraction is
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applied to formally analyze the web services. Manual and, thus error-prone
generation of models is no longer needed.

We implement the technique described above in a tool called SatAbs. It
is able to check safety properties of a combination of multiple PHP scripts. It
uses the Zend 2 engine as a front-end for PHP. The abstract model is computed
using SAT, and analyzed using a symbolic model checker that features partial
order reduction.

5.1.2 Related Work

Formal models for synchronization mechanisms have been thoroughly ex-
plored. For example, CSP [30] and the calculus of communicating systems
(CCS for short) [31] were introduced in the same years and influenced one
another throughout their development. CSP and CCS allow the description
of systems in terms of component processes that operate independently, and
interact with each other solely through different synchronization mechanisms.
In CSP, two processes must synchronize on any identically named action (i.e.,
by means of shared actions) that both are potentially capable of performing.
Moreover, any number of processes may interact on a single shared action.
In CCS, processes may interact on two complementary actions (e.g., a and
a, respectively input and output action over a shared channel named a), and
only bi-party interaction is supported.

Both CSP and CCS do not provide a way to directly represent and rea-
son about dynamic communications topologies and migrating computational
agents, which are an important aspect of many modern systems. Some people
see this as a major drawback of their theory. The pi-calculus [32] arose as a
generalization of CCS [31]. In the pi-calculus, processes not only synchronize
on two input/output actions over a shared channel, lent also send data along
those channels.

This chapter builds on work described in [26], where SAT-based predicate
abstraction is applied to a SystemC design. SystemC is a description language
based on C++ that is used to model both hardware and software components
of embedded designs. The concurrency primitives of SystemC are modeled
using the state/event-based notation introduced in [33]. As in this work, the
modeling framework consists of labeled Kripke structures.

The combined state-based and event-based notation has been explored
by a number of researchers. De Nicola and Vaandrager [34], for instance, in-
troduced ‘doubly labeled transition systems’, which are very similar to our
LKSs. Kindler and Vesper [35] used a state/event-based temporal logic for
Petri nets. Abstraction-based model checking is not reported for these formal-
izations. Huth et al. [36] also proposed a state/event framework, and defined
rich notions of abstraction and refinement. In addition, they provided ‘may’
and ‘must’ modalities for transitions, and showed how to perform efficient
three-valued verification on such structures.
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Most of the related work on formal analysis of web services consists of
verifying a formal description of the web service using a model checker. For
example, in [27] the authors propose translating models described in BPEL
into Promela and check the web service flow with the SPIN model-checker.
Another example of modeling and model checking of BPEL protocols is [18].
It uses Petri-nets for modeling and verification of coordination of the BPEL
processes.

In [28], a similar approach uses NuSMV. The verification of Linear
Temporal First-Order properties of asynchronously communicating web ser-
vices is studied in [29]. The peers receive input from their users and asyn-
chronous messages from other peers. The authors developed a special purpose
model checker [29] that allows verification of Web applications specified in
WebML.

Among other major techniques for analyzing web services there are works
of Bultan and others. This group developed a formal model for interactions
of composite web services supported by techniques for analysis of such inter-
actions [25, 24, 23, 39, 22]. Kramer et al. [40] defined a model-based approach
to verifying process interactions for coordinated web service compositions.
The approach uses finite state machine representations of web service or-
chestrations and assigns semantics to the distributed process interactions.
Pistore et al. proposed techniques for the automated synthesis of compos-
ite web services from abstract BPEL components [20], and verification of
Web service compositions defined by sets of BPEL processes [19]. The mod-
eling techniques are adopted for representing the communications among the
services participating in the composition. Indeed, these communications are
asynchronous and buffered in the existing execution frameworks, while most
verification approaches assume a synchronous communication model for effi-
ciency reasons.

In [37] at least the interface specification is verified at the source code
level using Java PathFinder. The SPIN model-checker is used for the behav-
ior verification of the asynchronously communicating peers (bounded mes-
sage queues). A language for specifying web service interfaces is presented
in [38]. None of the above techniques uses automated abstraction-based ver-
ification and, thus, are less competitive in verification of large-scale web
systems.

5.1.3 Outline

We provide background information on PHP and related languages and
predicate abstraction in Sect. 5.2. We explain the computational model in
Sect. 5.3 and formalize the semantics of the subset of PHP we handle.
Section 5.4 provides details on how to abstract the generated model and how
to verify it.
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5.2 Background

5.2.1 Implementations of Web Services

A web service is a system that provides an interface defined in terms of XML
messages and that can be accessed over the Internet [41]. It is intended for
machine-to-machine interaction.

Such a service is usually embedded in an application server. The applica-
tion server is a program that runs in an infinite loop and waits until a client
connects via a socket (by means of bidirectional communication over the In-
ternet) to a specified port. In order to process several requests simultaneously,
each incoming request is handled by a new thread from a thread pool. Thus,
there might be multiple instances of the same code running concurrently.

There are three main XML-based standards that define the web services
architecture: the Universal Description, Discovery and Integration (UDDI)
protocol is used to publish and discover web services, which are specified in
the Web Service Description Language (WSDL). The communication between
web services is defined by the Simple Object Access Protocol (SOAP).

There are three major roles within the web service architecture (Fig. 5.2):

1. Service provider—The service provider implements the service and makes
it available on the Internet.

2. Service requester—The client that connects to the web service.
3. Service broker—This is a logically centralized directory of services where

service providers can publish their services together with a service descrip-
tion. The service requester can search for services in this directory.

We restrict the presentation to service providers and requesters, i.e., we
assume that services are addressed statically by the requesters. Since there
are XML tools for nearly every operating system and every programming
language, web services are independent from the machine architecture, the
operating system, and the programming language. We use PHP syntax to
present our formalism. The formalism is applicable to similar languages for
web services as well with minor modifications specific to the syntax of those
languages.

WSDLWSDL

SOAP
Service Requester Service Provider

Service Broker

Fig. 5.2. Web service actors and protocols
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5.2.2 Synchronous Communication

Synchronous communication within web services is characterized by the client
being blocked until the service request has been processed.

Example 1 An example of synchronous communication is a credit card service
used in an e-commerce application: when the customer checks out his shopping
cart, the credit card service is invoked and the application then waits for
the approval or denial of the credit card transaction (Fig. 5.3). Figures 5.4
and 5.5 show an example of how a client and a server might be implemented,
respectively.

5.2.3 Asynchronous Communication

Asynchronous communication is used when the program cannot wait for the
receiver to acknowledge that the data was received. As an example, consider
the part of the e-commerce application that maintains a shopping basket. This
shopping basked is typically stored in persistent memory, e.g., a database. The
information is typically accessed by multiple processes over the lifetime of the
interaction with the client and, in a sense, communicated from one instance
of the server process to the next.

The time that passes between the accesses to the basket are arbitrary.
Synchronization between the time the data is sent (stored) and received (read)
is not desired. Also, note that the order of operations becomes important: as
an example, assume that a customer simultaneously issues a request to add an
item of a particular type to the basket and, independently, another request to
remove all items of that same type. The final result (none or one item of that
type) depends on the order in which the database transactions are processed.3

credit card web servicee−commerce application

Fig. 5.3. Synchronous communication

3 Synchronous communication, as described above, may in principle be imple-
mented by means of a database. However, the resulting implementation would
need to rely on polling and, thus, is very unlikely to scale.
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1 $ c l i e n t = new
2 SoapCl ient ( ‘ ‘ http : // example . net / soap /urn : c r ed i t ca r d . wsdl ” ) ;
3 i f ( $ c l i en t −>deb i t ( $cardnumber , $amount ) ) {
4 // t r an s ac t i on approved
5 // . . .
6 } e l s e {
7 // t r an s ac t i on f a i l e d
8 // . . .
9 }

Fig. 5.4. Example of SOAP client code

We assume that a shared database is the only means to exchange data
among the processes in a non-synchronizing way, i.e., we do not model local,
shared files that can be written into, or the like. The database is expected to
guarantee a specific level of atomicity in the form of transactions. The different
transactions from the various processes accessing the database are assumed
to interleave arbitrarily. The issue of ordering is captured by the concept of
races . The shopping-basked described above is an instance of such a race. Such
races often represent erroneous behavior. Bugs caused by race conditions are
a well-known problem of any system with asynchronous concurrency and are
very difficult to detect by means of testing.

5.2.4 Predicate Abstraction

The abstraction refinement process using predicate abstraction has been pro-
moted by the success of the Slam project at Microsoft Research, which aims
at verifying partial correctness of Windows device drivers [10]. The algorithm
starts with a coarse abstraction, and if it is found that an error-trace reported
by the model checker is not realistic, the error trace is used to refine the ab-
stract program, and the process proceeds until no spurious error traces can

1 c l a s s CreditCardTransact ion {
2 funct ion deb i t ( $cardnumber , $amount ) {
3 // deb i t money from c r e d i t card and re turn e r r o r code
4 // . . .
5 r e tu rn $succe s s ;
6 }
7 }
8
9 $ s e r v e r = new SoapServer (” c r ed i t c a rd . wsdl ” ) ;

10 $server−>s e tC l a s s (” CreditCardTransact ion ” ) ;
11 $server−>handle ( ) ;

Fig. 5.5. Example of SOAP server code
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be found. The actual steps of the loop follow the counterexample guided ab-
straction refinement (CEGAR) paradigm and depend on the abstraction and
refinement techniques used. Assume that a program M consists of compo-
nents M1, . . . , Mn executing concurrently. The verification procedure checks
if a property ϕ holds for M by using the following three-step iterative process:

1. Abstract: Create an abstraction M̂ such that if M has a bug, then so does
M̂ . This can be done component-wise without constructing the full state
space of M .

2. Verify: Check if a property ϕ holds for M̂ . If yes, report success and exit.
Otherwise, let Ĉ be a counterexample that indicates where ϕ fails in M̂ .

3. Refine: Check if Ĉ is a valid counterexample with respect to M . This
step is called simulation. Again, this can be done component-wise. If Ĉ
corresponds to a real behavior then the algorithm reports the flaw and a
fragment of each Mi that shows why the property is not satisfied (M �|= ϕ).
Otherwise, Ĉ is spurious, and M̂ is refined using Ĉ to obtain a more precise
abstraction. The algorithm continues with Step 1.

Existential Abstraction

The goal of abstraction is to compute an abstract model M̂ from the concrete
model M such that the size of the state-space is reduced and the property of
interest is preserved. We denote the set of abstract states by Ŝ. A concrete
state is mapped to an abstract state by means of an abstraction function,
which we denote by α : S −→ Ŝ. We also extend the definition of α to sets of
states: Given a set S′ ⊆ S, we denote {ŝ ∈ Ŝ | ∃s ∈ S′.α(s) = ŝ} by α(S′).

We restrict the presentation to reachability properties . The goal, therefore,
is to compute an abstraction that preserves reachability: any program location
that is reachable in M must be reachable in M̂ . Existential abstraction is a
form of abstraction that preserves reachability [9].

Definition 1 (Existential Abstraction [9]) Given an abstraction function
α : S −→ Ŝ, a model M̂ = (Ŝ, Ŝ0, R̂) is called an Existential Abstraction of
M = (S, S0, R) (here Ŝ0, S0, R̂, R are the initial states and transitions func-
tions of M̂ and M respectively) iff the following conditions hold:

1. The abstract model can make a transition from an abstract state ŝ to ŝ′ iff
there is a transition from s to s′ in the concrete model and s is abstracted
to ŝ and s′ is abstracted to ŝ′:

∀ŝ, ŝ′ ∈ (Ŝ × Ŝ).(R̂(ŝ, ŝ′) ⇐⇒
(∃s, s′ ∈ (S × S).R(s, s′)∧
α(s) = ŝ ∧ α(s′) = ŝ′))

(5.1)

2. An abstract state ŝ ∈ Ŝ is an initial state iff there exists an initial state s
of M that is abstracted to ŝ:

∀ŝ ∈ Ŝ.(ŝ ∈ Ŝ0 ⇐⇒ ∃s ∈ S0.α(s) = ŝ) (5.2)
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Existential abstraction is a conservative abstraction with respect to reach-
ability properties, which is formalized as follows.

Theorem 1 Let M̂ denote an existential abstraction of M , and let φ denote
a reachability property. If φ holds on M̂ , it also holds on M :

M̂ |= φ =⇒ M |= φ

Thus, for an existential abstraction M̂ and any program location l that
is not reachable in the abstract model M̂ , we may safely conclude that
it is also unreachable in the concrete model M . Note that the converse
does not hold, i.e., there may be locations that are reachable in M̂ but
not in M .

Notation

We denote the set of program locations by L. In program verification, the
abstract transition relation R̂ is typically represented using a partitioning,
similarly to the concrete transition relation R. The abstract transition relation
for program location l ∈ L is denoted by R̂l(ŝ, ŝ′), and the program location
of an abstract state ŝ by ŝ.	.

R̂(ŝ, ŝ′) ⇐⇒
∧

l∈L

(s.	 = l −→ R̂l(ŝ, ŝ′)) (5.3)

The computation of R̂ follows the structure of the partitioning according
to the program locations, i.e., R̂ is generated by computing R̂l from Rl for
each location l ∈ L separately. The following sections describe algorithms for
computing R̂l.

Predicate Abstraction

There are various possible choices for an abstraction function α. Predicate
abstraction is one possible choice. It is one of the most popular and widely
applied methods for systematic abstraction of programs and was introduced
by Graf and Säıdi [7]. An automated procedure to generate predicate abstrac-
tions was introduced by Colón and Uribe [8]. Predicate abstraction abstracts
data by keeping track only of certain predicates on the data. The predicates
are typically defined by Boolean expressions over the concrete program vari-
ables. Each predicate is then represented by a Boolean variable in the abstract
program, while the original data variables are eliminated. Verification of a
software system by means of predicate abstraction entails the construction
and evaluation of a system that is an abstraction of the original system with
respect to a set of predicates.
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We denote the set of Boolean values by B := {T, F}. Let P := {π1, . . . , πn}
denote the set of predicates. An abstract state ŝ ∈ Ŝ consists of the program
location and a valuation of the predicates, i.e., Ŝ = L × B

n. We denote the
vector of predicates by ŝ.π. We denote the value of predicate i by ŝ.πi. The
abstraction function α(s) maps a concrete state s ∈ S to an abstract state
ŝ ∈ Ŝ:

α(s) := 〈s.	, π1(s), . . . , πn(s)〉 (5.4)

Example 2 As an example, consider the following program statement, where
i denotes an integer variable:

i++;

This statement translates to the following concrete transition relation Rl(s, s′):

Rl(s, s′) ⇐⇒ s′.i = s.i + 1

Assume that the set of predicates consists of π1 ⇐⇒ i = 0 and π2 ⇐⇒
even(i), where even(i) holds iff i is an even number. With n = 2 predicates,
there are (2n)2 = 16 potential abstract transitions. A näıve way of computing
R̂ is to enumerate the pairs ŝ and ŝ′ and to check (5.1) for each pair separately.
As an example, the transition from ŝ = (l, F, F) to ŝ′ = (l, F, F) corresponds
to the following formula over concrete states:

∃s, s′. ¬s.i = 0 ∧ ¬even(s .i) ∧
s′.i = s.i + 1 ∧
¬s′.i = 0 ∧ ¬even(s ′.i)

(5.5)

This formula can be checked by means of a decision procedure. For in-
stance, an automatic theorem prover such as Simplify [42] can be used if a
definition of even(i) is provided together with (5.5). Since (5.5) does not have
any solution, this abstract transition is not in R̂l. Figure 5.6 shows the ab-
stract transitions for the program statement above, and one corresponding
concrete transition (i.e., a satisfying assignment to (5.1)) for each possible
abstract transition.

Abstract Transition Concrete Transition

ŝ.π1 ŝ.π2 ŝ′.π1 ŝ′.π2 s s′

F F F T s.i = 1 s′.i = 2
F F T T s.i = −1 s′.i = 0
F T F F s.i = 2 s′.i = 3
T T F F s.i = 0 s′.i = 1

Fig. 5.6. Example for existential abstraction: Let the concrete transition relation
Rl(s, s

′) be s′.i = s.i + 1 and let π1 ⇐⇒ i = 0 and π2 ⇐⇒ even(i). The table
lists the transitions in R̂l and an example for a corresponding concrete transition
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5.3 Extracting Formal Models of Web Services

5.3.1 Computational Model

A labeled Kripke structure [33] (LKS for short) is a 7-tuple (S, Init , P,L, T, Σ, E)
with S a finite set of states, Init ⊆ S a set of initial states, P a finite set of
atomic state propositions, L : S → 2P a state-labeling function, T ⊆ S × S
a transition relation, Σ a finite set (alphabet) of events (or actions), and
E : T → (2Σ \ {∅}) a transition-labeling function. We write s

A−→ s′ to mean
that (s, s′) ∈ T and A ⊆ E(s, s′).4 In case A is a singleton set {a}, we write

s
a−→ s′ rather than s

{a}−→ s′. Note that both states and transitions are
‘labeled’, the former with sets of atomic propositions, and the latter with
non-empty sets of actions.

A path π = 〈s1, a1, s2, a2, . . .〉 of an LKS is an alternating infinite sequence
of states and actions subject to the following: for each i � 1, si ∈ S, ai ∈ Σ,
and si

ai−→ si+1.
The language of an LKS M , denoted L(M), consists of the set of maximal

paths of M whose first state lies in the set Init of initial states of M .

5.3.2 Abstraction

Let M = (S, Init , P,L, T, Σ, E) and M̂ = (SM̂ , InitM̂ , PM̂ ,LM̂ , TM̂ , ΣM̂ , EM̂ )
be two LKSs. We say that M̂ is an abstraction of M , written M � M̂ , iff

1. PM̂ ⊆ P .
2. ΣM̂ = Σ.
3. For every path π = 〈s1, a1, . . .〉 ∈ L(M) there exists a path π′ =

〈s′1, a′
1, . . .〉 ∈ L(M̂) such that, for each i � 1, a′

i = ai and LM̂ (s′i) =
L(si) ∩ PM̂ .

In other words, M̂ is an abstraction of M if the ‘propositional’ language
accepted by M̂ contains the ‘propositional’ language of M , when restricted
to the atomic propositions of M̂ . This is similar to the well-known notion of
‘existential abstraction’ for Kripke structures in which certain variables are
hidden [43].

Two-way abstraction defines an equivalence relation ∼ on LKSs: M ∼ M ′

iff M � M ′ and M ′ � M . We shall be interested in LKSs only up to ∼-
equivalence.

5.3.3 Parallel Composition

Many properties of web services can only be verified in the context of mul-
tiple processes. We expect that large amounts of data have to be passed be-
tween those processes. We, therefore, modify the notion of parallel composition
4 By keeping with standard mathematical practice, we write E(s, s′) rather than

the more cumbersome E((s, s′)).
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in [33] to allow communication through shared variables. The shared variables
are used to model both communication through a database and the data that
is passed over sockets.

Let M1 = (S1, Init1, P1,L1, T1, Σ1, E1) and M2 = (S2, Init2, P2,L2, T2, Σ2, E2)
be two LKSs. We assume M1 and M2 share the same state space, i.e.,
S = S1 = S2, P = P1 = P2, and L = L1 = L2. We denote by s

A−→i s′

the fact that Mi can make a transition from s to s′.
The parallel composition of M1 and M2 is given by M1 ‖ M2 = (S, Init1 ∩

Init2, P,L, T, Σ1 ∪Σ2, E), where T and E are such that s
A−→ s′ iff A �= ∅ and

one of the following holds:

1. A ⊆ Σ1 \ Σ2 and s
A−→1 s′,

2. A ⊆ Σ2 \ Σ1 and s
A−→2 s′, or

3. A ⊆ Σ1 ∩ Σ2 and s
A−→1 s′ and s

A−→2 s′.

In other words, components must synchronize on shared actions and pro-
ceed independently on local actions. This notion of parallel composition is
similar to the definition used for CSP; see also [44].

5.3.4 Transforming PHP into an LKS

We assume that there is a set of services Σ, each with its own implementation.
The programs are assumed not to have explicitly generated threads. Instead,
we assume that nσ identical copies of the service σ ∈ Σ are running in parallel.

For the verification of the web service, we first construct a formal model
for it. We use LKSs for modeling the processes involved in the service. If the
source code of a component is not available, e.g., in the case of a third-party
service, we assume that an LKS summarizing the interface of the service is
written manually, using a (possibly informal) specification of the service as a
guide.

If the source code of the component is available, we compute a formal
model of the program automatically. The first step is to parse and type-
check the PHP program. Our scanner and parser is based on the scanner and
parser of the Zend Engine, version 2.0.5 The Zend engine is also used by most
execution environments for PHP.

The type-checking phase is complicated by the fact that the PHP language
is typically interpreted and, thus, variables in PHP scripts may have multiple
types, to be determined at run-time. We address this problem by introducing
multiple ‘versions’ of each variable, one for each type that the variable might
have. A new variable is added that stores the actual type that the program
variable has at a given point in time.

5 The Zend engine is available freely at http://www.zend.com/
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The next step is to further pre-process the program. Object construction
and destruction is replaced by corresponding calls to the construction and de-
struction methods, respectively.6 Side effects are removed by syntactic trans-
formations, and the control flow statements (if, while, etc.) are transformed
into guarded goto statements. As PHP permits method overloading, we per-
form a standard value-set analysis in order to obtain the set of methods that
a method call may resolve to. This is identical to the way function pointers
are handled in a programming language such as ANSI-C. The guarded goto-
program is essentially an annotated control flow graph (CFG). The CFG is
then transformed into an LKS, which is straightforward.

We formalize the semantics of a fragment of PHP using an LKS Mσ for
each service σ ∈ Σ. The behavior of the whole system is given by the parallel
composition Mσ

1 || . . . ||Mσ
nσ for all services σ, i.e., all copies of all services are

composed.
The only point of synchronization of processes is assumed to be a call using

SOAP or the like. For each thread i of service σ, we define a synchronization
event ωσ

i . We also define local actions τσ
i for all σ ∈ Σ and i ∈ {1, . . . , nσ}.

The τσ
i events are used exclusively by thread i of service σ. If the thread is

clear from the context, we simply write s
τ−→ s′ for a local transition of the

tread.

Notation

The global state space S = S1 = . . . = Sn is spanned by the data and
variables for all services and a program counter PCσ

i for each thread. Thus,
a state s ∈ S is a pair (V , PC) consisting of a vector V for the program
variables and a vector PC for the PCs. Given a state s ∈ S, we denote the
projection of the value of PCi from s as s.PCi.

The execution of a statement by thread i increases the PC of thread i,
while the other PCs remain unchanged. Let νi(σ) be a shorthand for PC

′

with PC′
i = PCi + 1 and PC′

j = PCj for all j �= i.

Initialization

We define the set of initial states Init as the set of states s ∈ S such that the
PCs are set to the start of each thread. The initialization of the variables is
assumed to be performed as part of the program.

Transition Relation

The transition relation of LKS Mi is defined by a case split on the in-
struction that is to be executed. There are four different statements: assign-
ments, guarded gotos, requests, and acknowledgments. Assignments are used
to model reading and writing of program variables and transactions on data in

6 In the case of PHP, only a very limited form of destruction is performed.
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the database. The guarded gotos model the control flow of the program. The
synchronizing calls to other web services, e.g., by means of SOAP as described
above, are modeled by means of two sync statements: the first sync statement
is used for the synchronization of the request, and the second sync statement
is used for the synchronization of the acknowledgment. The semantics of both
statements is identical.

Formally, let Pt(PC) denote the instruction pointed to by PC in thread
t. Let I be a shorthand for Pt(s.PCt).

• If I is a sync(σ) statement, the thread t non-deterministically chooses a
server thread i ∈ {1, . . . , nσ} and makes a ωσ

i -transition. No synchroniza-
tion with other threads is performed. Formally,

I = sync(σ); =⇒ s
ωσ

i−→t s′

with s′.V = s.V , s′.PC = νi(s.PC).
• If I is a statement that assigns the value of the expression e to the variable

x, the thread i makes a τ -transition and changes the global state accord-
ingly. Let s(e) denote the value of the expression e evaluated in state s.

I = x=e; =⇒ s
τ−→i s′

with s′.x = s(e), s′.y = s.y for y �= x, s′.PC = νi(s.PC). If the modifi-
cation of x triggers events that other threads are sensitive to, this can be
realized by an implicit notify statement after the assignment.

• If I is a guarded goto statement with guard g and target t, the thread i
makes a τ -transition and changes its PC accordingly:

I = if(g) goto t; =⇒ s
τ−→i s′

with s′.V = s.V , and

s′.PCj =
{

t : i = j ∧ s(g)
PCj + 1 : otherwise

5.4 Model Checking with Abstraction for Web Services

5.4.1 Existential Abstraction of Transition Systems with Events

For the verification of the web service, we first construct an abstract, formal
model for it. We assume that we have generated or written concrete LKSs as
described in Sect. 5.3.4. The concrete LKSs are then abstracted into abstract
LKSs. The labels on the states of the abstract LKSs correspond to predicates
that are used for predicate abstraction. As done in [45], we use SAT in order
to compute the abstraction of the instructions in the PHP programs. This
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section provides a short overview of the algorithm. For more information on
the algorithm, we refer the reader to [46, 45].

Recall that S denotes the (global) set of concrete states. Let α(s) with
s ∈ S denote the abstraction function. The abstract model makes an A-
transition from an abstract state ŝ to ŝ′ iff there is an A-transition from s to
s′ in the concrete model and s is abstracted to ŝ and s′ is abstracted to ŝ′.
Let T̂ denote this abstract transition relation. Formally,

ŝ
A−→ ŝ′ : ⇐⇒ ∃s, s′ ∈ S : s

A−→ s′ ∧
α(s) = ŝ ∧ α(s′) = ŝ′

(5.6)

This formula is transformed into conjunctive normal form (CNF) by re-
placing the bit-vector arithmetic operators by arithmetic circuits. Due to the
quantification over the abstract states this corresponds to an all-SAT instance.
For efficiency, one over-approximates T̂ by partitioning the predicates into
clusters [47]. The use of SAT for this kind of abstraction was first proposed
in [48]. We use Boolean programs [10] to represent the abstract models. In or-
der to represent the synchronizing events, a special sync instruction is added
to the language.

5.4.2 Thread-Modular Abstraction

The abstract models are built separately for each LKS corresponding to an in-
dividual PHP program, or thread of execution. The advantage of this approach
is that the individual programs are much smaller than the overall system de-
scription, which usually consists of multiple PHP scripts. After abstracting
the threads separately, we form the parallel composition of the abstract LKSs,
which can then be verified. The following formalizes our modular abstraction
approach.

Let M1 and M2 be two LKSs, and let π = 〈s1, a1, . . .〉 be an alternating
infinite sequence of states and actions of M1 ‖ M2. The projection π�Mi of
π on Mi consists of the (possibly finite) subsequence of 〈s1, a1, . . .〉 obtained
by simply removing all pairs 〈aj , sj+1〉 for which aj /∈ Σi. In other words, we
keep from π only those states that belong to Mi, and excise any transition
labeled with an action not in Mi’s alphabet.

We now record the following claim, which extends similar standard results
for the process algebra CSP [49] and LKSs [33].

Claim

1. Parallel composition is (well-defined and) associative and commutative
up to ∼-equivalence. Thus, in particular, no bracketing is required when
combining more than two LKSs.

2. Let M̂i denote the abstraction of Mi, and let M̂|| denote the abstraction
of the parallel composition of M1, . . . , Mn. Then M̂1|| . . . ||M̂n ∼ M̂||. In
other words, the composition of the abstract machines (M̂1, . . . , M̂n) is an
abstraction of the composition of the concrete machines (M1, . . . , Mn).
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For detailed related proofs of the compositional approach, we refer the
reader to [49, Chapter 2].

Claim 1 formalizes our thread-modular approach to abstraction. Simula-
tion and refinement can also be performed without building the transition
relation of the product machine. This is justified by the fact that the program
visible state variables (V and PC) are only changed by one thread on shared
transitions. Thus, abstraction, counterexample validation, and abstraction re-
finement can be conducted one thread at a time.

5.4.3 Abstraction-Refinement Loop

Once the abstract model is constructed, it is passed to the model checker
for the consistency check against the properties. We use the SatAbs model
checker [14], which implements the SAT-based predicate abstraction approach
for verification of ANSI-C programs. It employs a full counterexample-guided
abstraction refinement verification approach. Following the abstraction-refine-
ment loop, we iteratively refine the abstract model of the PHP program if it is
detected that the counterexample produced by the model checker cannot be
simulated on the original program. Since spurious counterexamples are caused
by existential abstraction and since SAT solvers are used to construct the
abstract models, we also use SAT for the simulation of the counterexamples.
Our verification tool forms a SAT instance for each transition in the abstract
error trace. If it is found to be unsatisfiable, it is concluded that the transition
is spurious. As described in [50], the tool then uses the unsatisfiable core of
the SAT instance for efficient refinement of the abstract model.

Clearly, the absence of individual spurious transitions does not guaran-
tee that the error trace is real. Thus, our model checker forms another SAT
instance. It corresponds to Bounded Model Checking (BMC) [51] on the orig-
inal PHP program following the control flow and thread schedule given by
the abstract error trace. If satisfiable, our tool builds an error trace from
the satisfying assignment, which shows the path to the error. A similar ap-
proach is used in [52] for DSP software. The counterexample is mapped back
to the program locations and syntax of the original PHP program in order
to provide a useful basis for error diagnosis. In particular, the counterexam-
ple trace includes values for all concrete variables that are assigned on the
path. If unsatisfiable, the abstract model is refined by adding predicates using
weakest preconditions. Again, we use the unsatisfiable core in order to select
appropriate predicates.

5.4.4 Object References and Dynamic Memory Allocation

The PHP language is based on C and C++ and, thus, makes frequent use of
dynamically allocated objects using the new operator. Also, it permits to take
the address of variables for building references. We support such constructs
by the following means:
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• We allow references and the (implicit) dereferencing operators within the
predicates.

• For each variable that may be assigned a reference, we have special pred-
icates that keep track of the size and a valid bit to track whether the
reference is NULL. It is set or cleared upon assignment. Each time the
pointer is dereferenced, we assert that the valid predicate holds. We de-
note the predicate by ζ(o), for any object o.

• During the construction of (5.6), we employ a standard, but control flow-
sensitive points-to analysis in order to obtain the set of variables a pointer
may point to. This is used to perform a case-split in order to replace the
pointer dereferencing operators. Dynamic objects are handled as follows:
we generate exactly as many instances as there are different points that
may alias to the same dynamic object.

This approach not only allows handing references within PHP programs,
but also efficiently manages the size of the generated CNF equations since it
avoids handling data that pointers do not point to.

Note that concurrency issues can be ignored during the alias analysis, as
references cannot be shared (practically) among processes. Thus, we can use
efficient and precise alias analysis algorithms for sequential programs.

Example

Figure 5.7 shows an example of predicate abstraction in the presence of
dynamically allocated objects. The left-hand side shows the code to be ab-
stracted, the right-hand side shows the predicates that hold after the execution
of the code. In order to show the last predicate, the equality of the two in-
teger fields is built, the following formula, where D1 and D2 denote the two
dynamic objects, and b3 denotes the Boolean variable corresponding to the
predicate p->n->i = p->i + 1:

p = &D1 ∧ D1.n = &D2 ∧
D′

2.p = D2.p ∧ D′
2.i = D1.i∧

(b3 ⇐⇒ (D′
2.i = D1.i + 1))

This formula is only valid for b3 = true, which shows the predicate.

class s {
var $n;

var $i;

}
...

$p=new s; ζ(∗p)
$p->n=new s; ζ(∗p), ζ(∗(p->n))
$p->n->i=$p->i+1; p->n->i = p->i + 1

Fig. 5.7. Example of abstraction in presence of dynamic objects
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5.4.5 Case Study

We have experimented with a set of PHP scripts in order to quantify
the performance of predicate abstraction on programs written in a script-
ing language. Two different scripts implement the two parts of the
service:

1. A front-end script handles client connections and interacts with them by
means of HTML forms. It maintains the user sessions and uses SOAP to
communicate with the back-end script.

2. The back-end script receives commands from the front-end script via
SOAP and stores transactions in a MySQL database.

The front-end and back-end scripts have about 4000 and 3000 lines of
code, respectively, not including in-line HTML. The property we check is an
assertion on the transaction records generated. It is enforced by the front-end
script (input data not compliant is rejected). For the purpose of verification,
we add an assertion that checks it in the back-end as well. We verify this
property for an unbounded number of client and front-end processes, and one
back-end process.

The main challenge when applying formal methods to scripting languages
such as PHP is to model the extensive library (as implemented by the PHP
execution environment). We have only completed that task to the point that
was required for the property described above to pass; a verification tool
of industrial relevance has to include an almost complete set of models for
all functions offered by the execution environment. Similar issues exist for
languages such as JAVA and C# as well, however. In particular, the direct
access to the SQL databases permitted by the PHP scripting language actually
requires statically analyzing SQL commands. Unfortunately, PHP does not
provide a suitable abstraction layer and, thus, the commands used to access
databases even depend on the vendor.

Our verification engine has been applied in the past to ANSI-C programs
of much larger size and higher complexity and, thus, typical scripts do not
pose a capacity challenge. The verification requires only five refinement itera-
tions, generating 120 predicates, and terminates within 51 seconds on a mod-
ern machine with 3.0 GHz. Most components of the abstraction-refinement
loop have linear run-time in the size of the programs. The only exception is
the verification of the abstract model, which may be exponential in practice.
However, in the case of PHP, this is rarely observed: as there is very lit-
tle interaction between the processes (when compared with C programs that
use shared-variable concurrency), the partial order reduction that our model
checker implements eliminates almost all interleavings between the threads,
and the complexity of verifying the abstract models becomes comparable to
that of checking sequential programs.
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5.5 Conclusion

This chapter formalizes the semantics of a PHP-like language for implement-
ing web services by means of labeled Kripke structures. The LKS notation
permits both synchronizing and non-synchronizing (interleaving) communica-
tion in the model. Both forms of communication are typical for web services.
While each form of communication can be replaced by the other one, doing
so typically results in a blowup of the model. The LKSs of the threads can be
analyzed formally by means of automatic predicate abstraction. These results
enable the verification of the applications that implement web services.

We have implemented these techniques in a tool called SatAbs. While our
implementation is currently limited to the verification of PHP5 scripts, the
method is also applicable to other programming languages used in this con-
text. It could be extended to handle systems that use multiple programming
languages, e.g., both PHP5 and JAVA, or PHP5 and C#.

Our implementation is able to show safety properties of a combination of
multiple PHP scripts running in parallel. Most steps of the analysis loop are
done in a thread-modular manner and, thus, the analysis scales in the number
of threads. The verification of the abstract (Boolean) model is the only part
of the analysis that examines the entire system.

Our implementation currently lacks support for liveness properties, despite
the fact that liveness is a property of high importance in the context of web
services. While predicate abstraction is in general suitable to prove liveness
properties, it has to be augmented with a generator for ranking functions in
order to prove termination of most loops [53]. Another future direction of
research is to extend the implementation to prove concealment properties,
e.g., that session IDs do not leak out.

Model checking for PHP or similar scripting languages possibly has ap-
plications beyond property checking. For example, the information obtained
about the reachable state-space could be exploited to efficiently compile a
PHP program (which is usually interpreted) into machine code.
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