
Equivalence Checking using Trace Partitioning

Rajdeep Mukherjee
University of Oxford

Daniel Kroening
University of Oxford

Tom Melham
University of Oxford

Mandayam Srivas
Chennai Mathematical Institute

Abstract—One application of equivalence checking is to es-
tablish correspondence between a high-level, abstract design
and a low-level implementation. We propose a new partitioning
technique for the case in which the two designs are substantially
different and traditional equivalence-point insertion fails. The
partitioning is performed in tandem in both models, exploiting the
structure present in the high-level model. The approach generates
many but tractable SAT/SMT queries. We present experimental
data quantifying the benefit of our partitioning method for both
combinational and sequential equivalence checking of difficult
arithmetic circuits and control-intensive circuits.

I. INTRODUCTION

When a new device is designed, a “golden model” is often
written in a high-level programming language such as ANSI-C,
C++ or SystemC. This model is extensively simulated to ensure
both correct functionality and that performance targets are met.
Later, a Verilog or VHDL implementation is created. It is
essential to check that the C and the Verilog models are consis-
tent. High-level models come in a broad variety of modeling
styles, which affects the choice of algorithm for performing
the consistency check. A combinational equivalence checker is
sufficient for a pair of models that are cycle accurate and have
the same set of state-holding elements. But when the high-level
model is not cycle-accurate or has a substantially different set
of state-holding elements, a sequential equivalence checker is
required [1], [2].

In this paper, we address the most general case and thus
most difficult variant of equivalence checking: we consider
the case in which the high-level and the low-level design are
substantially different. In this scenario, methods that rely on
equivalence points [3] are not very effective, and the equiva-
lence checking problem becomes a general Hardware/Software
(HW/SW) co-verification problem.

A widely used method to do formal HW/SW co-verification
is to apply symbolic simulation to both models, and then
merge the resulting formulas. The low-level model is usually
provided in register-transfer level (RTL) Verilog and the high-
level models are written in ANSI-C or SystemC. Bounded
model checking (BMC) using propositional SAT or satisfiabil-
ity modulo theories (SMT) can be easily applied to both RTL
and C-style languages [4], [5]. Figure 1 illustrates the flow of
a bounded co-verification tool, HW-CBMC. Here, the transition
relations for both models are unwound to obtain two formulas,
which are then conjoined and checked for satisfiability using
an efficient SAT or SMT procedure. The BMC approach relies
on a user-specified unwinding bound; if the bound is too small,
BMC is limited to bug-finding.

Supported by EPSRC EP/J012564/1, ERC project 280053 and the Semi-
conductor Research Corporation (SRC) under task 2269.001.

SAT/

SMT

Transition
Formula

Formula
Unwind

loops

Transition
Unwind

System

C
(Reference)

Verilog
(HW)

CFG

System

Fig. 1: Equivalence checking tool flow

In practice, equivalence checking is limited to block-
level designs and does not scale up to IP-level or SoC-level
designs. State-of-the-art industrial equivalence checkers such
as HECTOR (Synopsys) [6] and SLEC (Calypto)1, use combi-
nations of bit-level and word-level solvers to show equivalence
between C and RTL models. Both HECTOR and SLEC exploit
structural similarities present in the input designs to simplify
the equivalence proofs. Thus, they strongly rely on word-level
proof engines and aggressive pre-processing/rewrite engines
to exploit the similarities present in the word-level formulas
derived from two input models. Furthermore, in order to deal
with difficult instances, they support manual case-splitting of
the design—for example input-based case-splitting or slicing.

In this paper, we experimentally evaluate the benefit of
search-space partitioning for both combinational equivalence
checking (CEC) and sequential equivalence checking (SEC).
Case-splitting followed by slicing is the most commonly
used simplification technique to decompose harder proofs into
simpler sub-proofs for equivalence checking for block level
circuits [7], [8], [6]. In the case of combinational equivalence
checking, partitioning is usually straight-forward: it is not
difficult for the engineer to split up the set of inputs into
suitably easy sub-cases.

Partitioning is, however, more subtle in the case of sequen-
tial designs. We use transaction or scenario-based partitions
for our sequential benchmarks. We do not rely on information
from a high-level synthesis stage to guide the equivalence ver-
ification and also do not make use of simplifying assumptions
about structural similarity of the two models.

To obtain broadly valid experimental data, we target two
different classes of circuits: data-path intensive designs, exem-
plified by circuits for floating-point arithmetic, and control-
path intensive designs, which are represented by a USB
physical IP core and an implementation of an Ethernet MAC
controller IP.

Contributions: We address the broad area of “symbolic co-
simulation” of two models, which are typically a high-level

1http://calypto.com/en/products/slec/

reference design and a low-level implementation. We recognize
that the existing symbolic methods do not scale to the full
size of complex hardware IPs. This paper makes two main
contributions that address this problem:

• We present a novel transaction/scenario-based trace parti-
tioning technique for efficient symbolic co-simulation of
hardware descriptions (in Verilog) together with a high-
level reference model (in C). The technique is applicable
to both combinational and sequential equivalence check-
ing problems. The technique is aimed at the most difficult
variant of equivalence checking in which the high-level
reference design and the low-level implementation design
are substantially different and traditional equivalence-
point insertion technique fails.

• We experimentally evaluate the benefit of state-space
partitioning for combinational and sequential equivalence
checking of complex hardware IPs. To this end, we
experimentally evaluate the performance of the word-level
bounded equivalence checker, HW-CBMC, with and with-
out partitioning. We benchmark the alternative approaches
using a wide variety of circuits, ranging from difficult
floating point arithmetic circuits to complex control-path
intensive circuits exemplified by USB PHY IP core and
Ethernet MAC IP.

II. BACKGROUND

This section introduces formalism for program traces, and
reviews how to construct a miter for checking equivalence
of a hardware and a software model, and briefly introduces
Bounded Model Checking.

A. Traces

The semantics of program statements is defined relative to
an environment function that maps program variables to their
values, Env = Var→ Val. A statement s defines a function δs :
℘(Env)→℘(Env). A state is a location n with an environment
εi. A trace is a sequence of states (n0,ε0), . . . ,(nk,εk) such that
for all 0≤ i < k, (ni,ni+1) is a control-flow graph (CFG) edge
and εi+1 ∈ δ(ni,ni+1)({εi}). A program is safe if there is no
trace with n0 = init and nk = �.

B. Miters for HW/SW Equivalence Checking

A miter circuit is built from two given circuits A and B as
follows: identical inputs are fed into A and B, and the outputs
of A and B are compared using a comparator. We consider
the case in which one of the circuits is a software program.
Figure 2 shows an example miter for checking combinational
equivalence of a 32-bit floating-point adder/subtractor circuit.
We provide the same floating-point numbers as inputs to the
reference design (in C) and the hardware implementation (in
RTL Verilog) using a function set_inputs(). Subsequently,
we indicate that we want to perform a floating-point addition
by setting isAdd=1. The results computed by the hardware
design and the C reference model are compared using the
compareFloat() function.

void miter(float f, float g) {
// setting up the inputs to hardware FPU
f p add sub. f = ∗(unsigned∗)& f ;
f p add sub.g = ∗(unsigned∗)&g;
f p add sub.isAdd = 1;
// propagates inputs of the hardware circuit
set inputs();
// get result from hardware circuit
float Verilog result = ∗(f loat∗)& f p add sub.result;
// compute fp-add in Software with rounding mode RNE
float C result = add(RNE, f ,g);
// compare the outputs
assert(compareFloat(C result,Verilog result));

}

Fig. 2: Miter for combinational equivalence checking for a
32-bit floating-point adder/subtractor for the case of addition

C. Bounded Model Checking

Bounded Model Checking (BMC) [5] can be briefly
sketched as follows. Given a depth k and a set of error states F ,
BMC operates by unwinding the transition relation T up to
depth k starting from initial state x0, represented by an initial
state predicate I. This forms the following formula:

I(x0)∧T (x0,x1)∧ . . .∧T (xk−1,xk)∧ (F(x1)∨ . . .∨F(xk))

A SAT solver is used to determine if the formula is satisfiable.
If so, there exists an error trace of length at most k and
the procedure terminates, reporting the error. Otherwise, the
property holds true on the transition system up to the bound
of k. The main challenge of this approach is scalability: the
basic SAT/SMT approach works reasonably well up to the
module level, but generates instances that are too large for
bigger verification tasks. We present a technique for generating
many but easy SAT/SMT instances to overcome this problem.

III. EQUIVALENCE CHECKING WITH TRACE
PARTITIONING

Previous research has shown that case splitting and slicing
make bit-level combinational equivalence checking easier [7],
[8], [6]. The approach is straightforward to implement. But
partitioning is more subtle in case of sequential designs. This
section discusses the various trace partitioning techniques for
application in the setting illustrated in Figure 3.

A. Trace Partitioning

Trace partitioning [9] is a method for independently
analysing sets of program traces generated by a suitably chosen
partitioning function, and was introduced in the context of
abstract interpretation [10] as a way to increase the precision
of a given abstract domain for a single program.

By contrast, we apply trace-driven partitioning in sequen-
tial equivalence checking with the goal to split the state space
in a way that enables sufficiently tractable analysis of each
of the partitions with the final SAT solver calls. The effort
required for analysis increases linearly with the number of par-
titions generated by the partition function, and exponentially
with the size of the partitions. The goal is thus a partitioning
function that yields partitions of essentially constant difficulty.

The idea of trace partitioning is to distinguish traces using
a function α : K→℘(S∗) that maps some set of tokens K to

Design Logic + Harness

Equivalence Checking

Using HW-CBMC

Hardware-Software Interface
Mapping Specification

(in Verilog) (in C)
HW SW

Harness
Partitioning

Fig. 3: Equivalence checking using trace partitioning

sets of traces S∗. We consider two extreme cases. If |K| = 1
and α(K) = S∗, then there is no discrimination between traces.
On the other hand, if |K|= S∗ and α(k) = idS∗ for k ∈ K and
id is the identity function, then each trace is considered in
isolation and an analysis with this partition is basically an
explicit exploration of all program traces. In practice, we aim at
a partition that falls between the two extremes. We systematize
the search for a suitable partition using trace partitioning
templates, described next.

B. Trace Partitioning Templates

The choice of partition function helps to fine-tune the
scalability of the analysis by performing coarser splitting
where possible and only increasing the number of partitions
where necessary. There exists several partitioning techniques
in the literature [11], [12], [7] that can be used to partition
the state-space of the design. In this paper, we present our
experimental results based on input-based partition for CEC
and transaction/scenario-based partition for SEC, which are
described next.

Value, control-flow and length-based Partitioning: Value-
based trace partitioning restricts the range of a variable at one
or more program locations. For example, if x is a program
variable, then the partition of the traces may depend on
grouping the input values of the variable x into three separate
cases {x < 0,x > 0,x = 0}. Control-flow based trace parti-
tioning distinguishes traces according to control-flow history.
Further, length or parity based trace partitioning is based on
the length of a trace. In this case, the partition function is
given by α : {0,1} → S∗, where α(0) corresponds to those
traces that execute the loop an even number of times and
α(1) corresponds to those traces that execute the loop an odd
number of times.

Input-based Partitioning: Input-based trace partitioning is
a special case of value-based trace partitioning. To illustrate
input-based partitioning [7], [8], [6], let us revisit the harness
given in Fig. 2. The CPROVER assume(c) statement instructs
the HW-CBMC tool to restrict the analysis to only those paths

satisfying a given condition c. We can limit the analysis to
those paths that are exercised by inputs where the rounding
mode is nearest-even (RNE) and both input numbers are NaNs
by adding the following statements:
CPROVER assume(fp add sub.roundingMode==RNE);
CPROVER assume(fp add sub.uf nan);
CPROVER assume(fp add sub.ug nan);

Transaction/scenario-based Partitioning: We propose a
novel partition technique, known as transaction/scenario-based
trace partitioning, to systematize the search-space partitioning
for scalable equivalence verification of complex IP designs.
Let us consider a model M with input signals {I} and output
signals {O}. Here, a transaction can be defined by two events:

1) Initiation event, init – a condition on a subset of input
signals, {I}.

2) Completion event, comp – a condition on a subset of
output signals, {O}.

Both events, init and comp, can be possibly spread over time.
But, assuming the duration of the transaction event is finite,
there must exist some distinguishable last completion event.
Now, recall the definition of a trace which is a sequence of
states, {(n0,ε0), . . . ,(nk,εk)}. For the purpose of illustration,
let us assume that the Var ∈ ε0 corresponds to I and Var ∈ εk
corresponds to O. A transaction can then be defined as a
projection over a legal trace T of a model M. In other words,
a transaction is an occurrence of a finite series of events of
particular pattern satisfying init and comp and can be repre-
sented as a path constraint. A transaction-based partitioning
is an enhancement of input-based case splitting. The reason
being that a transaction may involve some input signals, output
signals as well as some internal states of the model, as for
example, device configuration registers.

A use-case scenario is defined as either a particular finite
sequence of transactions or an infinite sequence of transactions
satisfying a recurring pattern. This can be manifested in the
form of a state machine or using a regular expression. Thus a
scenario is characterized by the set of allowable control-flow
paths in a model.

Figure 4 presents a fragment of a high-level model (in
C) and two transactions. The high-level model consists of a
single outer while loop that encodes complex control flow
and interacts with the environment. This code fragment im-
plements a high-level power management strategy in an IP,
say a transmitter (trans). Assuming that only a small fragment
of the logic is enabled inside trans module during power
gating (i.e. bu f out is “don’t care”). Thus, partitioning using
transaction 1 (voltage level == 10) simplifies the logic for
the non-power gated components inside trans through the use
of assumptions, which restricts the tool to those set of paths
satisfying transaction 1 thereby making the final SAT solver
query tractable. On the other hand, transaction 2 partitions the
design to those set of paths which involves only the normal
logic (voltage level == 20) and prunes the logic involved for
power gating and other modes of operation (e.g. TURN OF,
TURN ON, STAND BY). These transactions are fed to the
tool as an assumption to partition the verification state-space.

ANSI-C Transactions

#define threshold 15
if(reset) {
mode=0,turn=0;
feedback=0;
}
else { // code fragment for IP
// Trigger IP if env is set
if(env) {
turn = 1; mode = 1;
// check the voltage level
if(voltage_level < threshold)
power_gated = 1;
else power_gated = 0;
// check the low-power modes
if(mode == STAND_BY ||
mode == TURN_OFF) {
// power gated logic.
if(power_gated) {
trans(reset,mode,power_gated
ser_in ,&buf_out);
feedback = LOW; // no transmission
}
else { // normal logic
trans(reset,mode,power_gated
ser_in ,&buf_out);
feedback = buf_out;
}} }

Transaction1 :
(reset == 0)∧ (env == 1)
∧(mode == STAND BY)
∧(voltage level == 10)

Transaction2 :
(reset == 0)∧ (env == 1)
∧(mode == HIBERNAT E)
∧(voltage level == 20)

Fig. 4: High-level model in C and some transactions

IV. EXPERIMENTAL RESULTS

We report experimental results for equivalence checking of
two different classes of circuits. We perform trace-partitioning
experiments on data-path intensive circuits, namely single-
precision and double-precision floating point arithmetic cir-
cuits. As representatives for control-path intensive circuits
we use an USB PHY IP core and Ethernet MAC IP
from opencores2. To enable other researchers to repro-
duce our results, all benchmarks are available online at
www.cprover.org/hardware/partitioning-isvlsi/.

Data-path Intensive Benchmarks:

IEEE 754 Floating-point Arithmetic Circuits: We have de-
veloped both a C and a Verilog implementation of an IEEE-754
32-bit single-precision dual-path floating point adder/subtrac-
tor, which takes two 32-bit floating point numbers as input
and returns a 32-bit floating point number as result. The
floating-point design includes various modules like packing,
unpacking, normalizing, rounding and handling of infinite,
normal, subnormal, zero and NaN. We used Softfloat3 as our
reference implementation. Softfloat is a well-known software
implementation of the IEC/IEEE standard for binary floating-
point arithmetic.

Control-path Intensive Benchmarks:

USB PHY IP: The USB 1.1 Physical Interface core IP provides
all functions essential to interface to the USB 1.1 bus. This
includes serial/parallel conversion, bit stuffing and unstuffing,
NRZI encoding and decoding and a DPLL. The core USB PHY
1.1 supports the industry standard UTMI interface specifica-
tion. The phy mode signal in the core selects between single
ended and differential tx phy output. Currently, the PHY IP
from opencores only operates in full speed mode. The required

2http://opencores.org/
3http://www.jhauser.us/arithmetic/SoftFloat.html

clock frequency is 48 MHz, from which the 12 MHz USB
transmit and receive clocks are derived.

Ethernet MAC IP: The tri-mode Ethernet MAC implements
a MAC controller conforming to IEEE 802.3 specification
and supports serial PHY and parallel PHY interfaces. It also
supports automated pause frame generation and termination as
well as half-duplex for 10 and 100 Mbps mode. The default
FIFO depth of the transmitter (MAC T X FF DEPT H) and
the receiver (MAC RX FF DEPT H) is 9, which means that
the FIFO can contain 512 words.

A. Experimental Setup

All our experiments were run on an Intel Xeon machine
with 8 cores at 3.07 GHz with 48 GB RAM. All times in Table I
and Table II are reported in seconds. CBMC4 is used to perform
bounded equivalence checking of C designs—the tool takes as
input a C program with assertions. The tool HW-CBMC is built
on top of CBMC. HW-CBMC is used for word-level bounded
equivalence checking of designs at different levels of design
abstraction—C-RTL models and RTL-RTL models. The tool
takes as input a C program and a Verilog RTL implementation.
The RTL hardware description is unrolled for each program
step using a function call next_timeframe(). Other C-RTL
and RTL-RTL SEC tools are HECTOR and SLEC, but these
tools were not easily obtainable by us for experimentation.

Table I presents the timings for equivalence checking of
IEEE-754 single-precision and double-precision floating point
arithmetic circuits. Columns 1–4 give the name of benchmark,
design sizes for reference and implementation models, and
the total time for equivalence checking without partitioning,
respectively. Columns 5–10 in Table I report the CEC time
with input-based case splitting. Note that the total time in
Table I indicates the time required to verify all possible
combinations of the input numbers and roundingMode. The
timeout is set to 16 hours for CEC. We note that the verification
of the single-precision and double-precision multiplier and
divider circuit did not terminate without partitioning.

Table II reports the effect of search-space partitioning for
sequential equivalence checking of hardware IPs using HW-
CBMC. Columns 1–3 give the name of benchmark and the
size of the reference and implementation models, respectively.
Columns 4–6 give the bound up to which the hardware
transition system is unrolled, the unwinding limit for the ref-
erence design and the time taken by SEC without partitioning.
Columns 7–8 give the run-times when using two different
partition harnesses, TP1 and TP2, respectively. The timeout
is set to 7 hours for SEC.

B. Discussion

HW-CBMC implements both bit-level and word-level equiv-
alence checking engines. We observe that the bit-level equiv-
alence checker performed badly when compared to the word-
level equivalence checker, both for data-path and control-
path intensive circuits. This holds true irrespectively of the
back-end solver engines used. The default SAT solver engine
used is MiniSAT 2.2.05. HW-CBMC also supports different

4http://www.cprover.org/cbmc/
5http://minisat.se/

http://www.cprover.org/hardware/partitioning-isvlsi/

backend SMT solvers, namely Z3, MathSAT, CVC4 and Yices.
Our experience with word-level equivalence checkers suggests
that SAT solvers still outperform SMT solvers, especially
when the input models are substantially different. Thus, we
report our results using word-level equivalence checker with
MiniSAT 2.2.0. It is worth emphasising that bit-level reasoning
engines can benefit from word-level input, as custom clause-
level encodings into CNF can be used.

Combinational Equivalence Checking: In Table I, we report
the results when using input-based case splitting based on
rounding mode, (RNE), and types of numbers (subnormal,
NaN, zero, infinity, normal). The top three rows reports C-
RTL equivalence checking with three different reference im-
plementations, Dual-path, CBMC and Softfloat. Note that the C
and RTL designs are structurally different and thus techniques
which rely on equivalence points fail [7], [8]. However, HW-
CBMC is able to handle arbitrary designs and proves equiva-
lence in a reasonable amount of time. The dominant times are
required for the case of normal and subnormal numbers.

We highlight that trace partitioning has enabled us to
verify the equivalence of single precision and double-precision
floating-point multiplier and divider circuits, when, by contrast,
the verification of these complex arithmetic circuits exceed the
capacity of the state-of-the-art SAT solvers due to complex
data-path logic. Our result in Table I reconfirms previous
observations that input-based case splitting is an effective
partitioning technique for block-level arithmetic circuits [7],
[8], [6].

Sequential Equivalence Checking: Compared to the input-
based case-splitting that is used to partition the search-space
for combinational equivalence checking of block level arith-
metic circuits, the partitioning for sequential hardware IPs is
more subtle. Here, we perform partitioning based on transac-
tions or what could be interpreted as a “use-case scenario”.
Consequently, the modular and hierarchical design structure
of these IPs makes it easier to identify suitable transaction/s-
cenario pairs for effective partitioning of the design. We now
briefly discuss the various partitions used for our sequential
benchmarks.

The modular structure of USB PHY IP helped us to par-
tition its operations based on different use-case scenarios in
transmitter and the receiver module, which are identified as
TP1 and TP2 respectively in Table II. TP1 checks equivalence
of the DPLL and the NRZI Encoder logic and equivalence of
the output enable logic and output registers in the transmitter
module. TP2 performs equivalence checking of the NRZI
decoder logic and the serial to parallel converter logic in
USB PHY receiver module. For the Ethernet MAC IP, TP1
and TP2 partition the design state-space based on different
operation modes such as promiscuous (transparent) and non-
promiscuous (filtered) operation, respectively.

It is important to note that the high-level use-case scenarios
derived from the reference design (in software) are used to
partition the verification space in hardware (RTL implemen-
tation). We emphasize that the discovery of a transaction/s-
cenario pair is non-trivial. However, our experience with the
application of different partitioning techniques (input-based
and transaction/scenario based) with HW-CBMC tells us that the
control paths in the reference model can be exploited to derive

suitable transaction/scenario pairs for effective partitioning
of the design state-space in sequential equivalence checking.
Our experimental results show the efficacy of this partition
technique for equivalence checking on our benchmarks.

V. RELATED WORK

Over the past years, there have been several works that
focus on equivalence checking between designs at different
abstraction levels [13], [1], [2], [3], [6]

The work of [14], [6] proposed a theoretical framework for
checking equivalence between system-level designs against an
RTL design. All these techniques are tuned for the case of
equivalence verification of structurally identical designs [7],
[8]. Further, to scale up SEC, trace partitioning [9] has so far
been usually performed in an ad-hoc fashion, the most simplest
form of which is case-splitting followed by slicing [11], [7].

VI. CONCLUSION

In this paper, we experimentally evaluated the benefit of
state-space partitioning for both combinational and sequen-
tial equivalence checking of two arbitrary input designs—
the hardware descriptions (e.g., given in Verilog) together
with a high-level reference model (in C). The key to scal-
ability for SAT-based symbolic co-simulation techniques is
to perform partitioning of both models, resulting in multiple
but manageable queries for today’s SAT/SMT solvers. Our
experimental results show that equivalence checking with
transaction/scenario-based partitioning can scale up existing
SEC tools. We also experimentally evaluated the benefit of
input-based case-splitting for CEC of complex arithmetic
circuits. In future, we plan to developing a technique that
effectively performs such partitioning in an automated way that
is inspired by the decision heuristics and deduction methods
in modern propositional SAT solvers.

REFERENCES

[1] C. A. J. van Eijk, “Sequential equivalence checking without state space
traversal,” in Design, Automation and Test in Europe (DATE). IEEE
Computer Society, 1998, pp. 618–623.

[2] J. Baumgartner, H. Mony, V. Paruthi, R. Kanzelman, and G. Janssen,
“Scalable sequential equivalence checking across arbitrary design trans-
formations,” in International Conference on Computer Design (ICCD).
IEEE, 2006, pp. 259–266.

[3] W. Wu and M. S. Hsiao, “Mining global constraints for improving
bounded sequential equivalence checking,” in Design Automation Con-
ference (DAC). ACM, 2006, pp. 743–748.

[4] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu, “Bounded
model checking,” Advances in Computers, vol. 58, pp. 117–148, 2003.

[5] E. M. Clarke, D. Kroening, and F. Lerda, “A tool for checking ANSI-C
programs,” in Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), ser. LNCS, vol. 2988. Springer, 2004, pp. 168–176.

[6] A. Kölbl, R. Jacoby, H. Jain, and C. Pixley, “Solver technology for
system-level to RTL equivalence checking,” in Design, Automation and
Test in Europe (DATE). IEEE, 2009, pp. 196–201.

[7] B. Xue, P. Chatterjee, and S. K. Shukla, “Simplification of C-RTL
equivalent checking for fused multiply add unit using intermediate
models,” in Asia and South Pacific Design Automation Conference
(ASP-DAC). IEEE, 2013, pp. 723–728.

[8] M. Fujita, “Verification of arithmetic circuits by comparing two similar
circuits,” in Computer Aided Verification (CAV), ser. LNCS, vol. 1102.
Springer, 1996, pp. 159–168.

Lines of code Combinational Equivalence Checking With Trace Partitioning
Circuit Without With Input-based Partitioning

Reference Implementation Partitioning (Verification Time in Seconds)
Model Design Total Time Subnormal Infinity Zero NaN Normal Total Time
CBMC RTL C versus RTL Equivalence Checking (Single-Precision Dual-Path versus CBMC Adder)

32-bit FP Adder 13 680 309.5 81.3 2.1 2.3 1.8 9.8 315.6
Dual-path RTL C versus RTL Equivalence Checking (Single-Precision Dual-Path Adder)

32-bit Adder 650 680 535.8 171 8.1 8.0 7.9 297.4 546.2
Softfloat RTL C versus RTL Equivalence Checking (Single-Precision Dual-Path versus Softfloat Adder)

32-bit FP Adder 1847 680 623.5 61.2 3.7 3.5 3.4 28.5 618.7
RTL Optimized RTL RTL versus RTL Equivalence Checking (Dual-Path versus Optimized Dual-Path Adder)

32-bit FP Adder 680 715 13.8 2.4 2.3 2.7 2.4 2.3 14.2
C C C versus C Equivalence Checking (CBMC versus SoftFloat versus Dual-Path Adder)

Dual-Path vs. CBMC 756 13 560.7 159.1 0.5 0.6 0.5 430.8 598.5
Softfloat vs. CBMC 1847 13 24.9 1.6 0.5 0.5 0.5 22.9 29.3
Softfloat vs.Dual-Path 1847 756 1145.8 98.7 0.5 0.5 0.5 1067.5 1174.8

Softfloat Slowfloat C versus C Equivalence Checking (Single-Precision Softfloat versus Slowfloat)
32-bit FP Multiplier 2136 1045 Did not Terminate 0.8 0.5 0.4 0.5 29866.3 29997.5
32-bit FP Divider 2369 1114 Did not Terminate 26789.4∗ 0.9 0.8 0.8 54341.7∗ 81733.6∗

Softfloat Slowfloat C versus C Equivalence Checking (Double-Precision Softfloat versus Slowfloat)
64-bit FP Adder 2309 1174 4449.7 387.1 1.6 1.7 33.8 4056.2 4492.4
64-bit FP Multiplier 2383 1186 Did not Terminate 2.1 1.6 1.5 1.7 38764.5∗ 38824.4∗

TABLE I: Run times for combinational equivalence checking for IEEE 754 floating-point arithmetic circuits (runs marked with
* are limited to RNE+Type+Even+Odd, the timeout was set to 16 hours)

Lines of code Sequential Equivalence Checking With Trace Partitioning
Circuit Bound Unwind Without With Transaction/Scenario based

Reference Implementation Depth Limit Partitioning Trace Partitioning
Model Design Total Time TP1 TP2

C RTL C versus RTL Equivalence Checking
SERIAL ADDER 47 62 10 – 0.9 0.9∗ 0.9∗

PIPELINED ADDER 52 68 10 – 0.8 0.8∗ 0.8∗

ETHERNET MAC IP 1050 1200 100 15 Did not Terminate 21578.9 22451.3
USB PHY IP 860 950 200 50 Did not Terminate 22681.4 21822.3

RTL Optimized RTL RTL versus RTL Equivalence Checking
SERIAL ADDER 62 54 10 – 0.6∗ 0.6∗ 0.6∗

PIPELINED ADDER 68 58 10 – 0.5∗ 0.5∗ 0.5∗

ETHERNET MAC IP 1200 1220 500 30 1384.5 956.2 948.7

TABLE II: Run times for sequential equivalence checking for control-intensive circuits (∗ – no partitioning possible, the timeout
set was to 7 hours)

[9] X. Rival and L. Mauborgne, “The trace partitioning abstract domain,”
ACM Trans. Program. Lang. Syst., vol. 29, no. 5, 2007.

[10] P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation
of fixpoints,” in Symposium on Principles of Programming Languages
(POPL). ACM, 1977, pp. 238–252.

[11] C. Karfa, D. Sarkar, and C. Mandal, “Verification of datapath and
controller generation phase in high-level synthesis of digital circuits,”
IEEE Trans. on CAD of Integrated Circuits and Systems (TCAD),
vol. 29, no. 3, pp. 479–492, 2010.

[12] L. Liu and S. Vasudevan, “Scaling RTL property checking using feasible
path analysis and decomposition,” in Great Lakes Symposium on VLSI
(GLSVLSI). ACM, 2013, pp. 173–178.

[13] E. M. Clarke, D. Kroening, and K. Yorav, “Behavioral consistency of
C and verilog programs using bounded model checking,” in Design
Automation Conference (DAC). ACM, 2003, pp. 368–371.

[14] Z. Khasidashvili, M. Skaba, D. Kaiss, and Z. Hanna, “Theoretical
framework for compositional sequential hardware equivalence verifi-
cation in presence of design constraints,” in International Conference
on Computer-Aided Design (ICCAD). IEEE/ACM, 2004, pp. 58–65.

	Introduction
	Background
	Traces
	Miters for HW/SW Equivalence Checking
	Bounded Model Checking

	Equivalence Checking with Trace Partitioning
	Trace Partitioning
	Trace Partitioning Templates

	Experimental Results
	Experimental Setup
	Discussion

	Related Work
	Conclusion
	References

